FPGA的電源管理
發(fā)布時(shí)間:2018-05-07 來源:Frederik Dostal 責(zé)任編輯:wenwei
【導(dǎo)讀】為FPGA應(yīng)用設(shè)計(jì)優(yōu)秀電源管理解決方案不是一項(xiàng)簡單的任務(wù),相關(guān)技術(shù)討論有很多。本文一方面旨在找到正確解決方案并選擇最合適的電源管理產(chǎn)品,另一方面則是如何優(yōu)化實(shí)際解決方案以用于FPGA。
找到合適的電源解決方案
尋找為FPGA供電的最佳解決方案并不簡單。許多供應(yīng)商以適合為FPGA供電的名義推銷某些產(chǎn)品。為FPGA供電的DC-DC轉(zhuǎn)換器選擇有何特定要求?其實(shí)并不多。一般而言,所有電源轉(zhuǎn)換器都可用來為FPGA供電。推薦某些產(chǎn)品通常是基于以下事實(shí):許多FPGA應(yīng)用需要多個(gè)電壓軌,例如用于FPGA內(nèi)核和I/O,還可能需要額外的電壓軌來用于DDR存儲器。將多個(gè)DC-DC轉(zhuǎn)換器全部集成到單個(gè)穩(wěn)壓器芯片中的PMIC(電源管理集成電路)常常是首選。
一種為特定FPGA尋找優(yōu)秀供電解決方案的流行方法是使用許多FPGA供應(yīng)商都提供的已有電源管理參考設(shè)計(jì)。這對于優(yōu)化設(shè)計(jì)來說是一個(gè)很好的入門方式。但此類設(shè)計(jì)往往需要修改,因?yàn)镕PGA系統(tǒng)通常需要額外的電壓軌和負(fù)載,這些也需要供電。在參考設(shè)計(jì)上增加一些東西常常也是必要的。還有一件事需要考慮,那就是FPGA的輸入電源不是固定的。輸入電壓在很大程度上取決于實(shí)際的邏輯電平以及FPGA所實(shí)現(xiàn)的設(shè)計(jì)。完成對電源管理參考設(shè)計(jì)的修改之后,它看起來將與最初的參考設(shè)計(jì)不同??赡苡腥藭?huì)辯稱,最好的解決方案是根本不用電源管理參考設(shè)計(jì),而是直接將所需的電壓軌和電流輸入到電源管理選型與優(yōu)化工具中,例如ADI公司的 LTpowerCAD等。
圖1. 通過LTpowerCAD工具選擇合適的DC-DC轉(zhuǎn)換器來為FPGA供電。
LTpowerCAD可用來為各個(gè)電壓軌提供電源解決方案。它還提供一系列參考設(shè)計(jì),以讓設(shè)計(jì)人員快速入門。LTpowerCAD可以從ADI公司網(wǎng)站免費(fèi)下載。
一旦選擇了電源架構(gòu)和各個(gè)電壓轉(zhuǎn)換器,就需要選擇合適的無源元件來設(shè)計(jì)電源。做這件事時(shí),需要牢記FPGA的特殊負(fù)載要求。
它們分別是:
1.各項(xiàng)電流需求
2.電壓軌時(shí)序控制
3.電壓軌單調(diào)上升
4.快速電源瞬變
5.電壓精度
6.各項(xiàng)電流需求
FPGA的實(shí)際電流消耗在很大程度上取決于使用情況。不同的時(shí)鐘和不同的FPGA內(nèi)容需要不同的功率。因此,在FPGA系統(tǒng)的設(shè)計(jì)過程中,典型FPGA設(shè)計(jì)的最終電源規(guī)格必然會(huì)發(fā)生變化。FPGA制造商提供的功率估算工具有助于計(jì)算解決方案所需的功率等級。在構(gòu)建實(shí)際硬件之前,獲得這些信息會(huì)非常有用。但是,為了利用此類功率估算工具獲得有意義的結(jié)果,F(xiàn)PGA的設(shè)計(jì)必須最終確定,或者至少接近最終完成。
通常情況下,工程師設(shè)計(jì)電源時(shí)考慮的是最大FPGA電流。如果最終發(fā)現(xiàn)實(shí)際FPGA設(shè)計(jì)需要的功率更少,設(shè)計(jì)人員就會(huì)縮減電源。
電壓軌時(shí)序控制
許多FPGA要求不同電源電壓軌以特定順序上電。內(nèi)核電壓的供應(yīng)往往需要早于I/O電壓的供應(yīng),否則一些FPGA會(huì)被損壞。為了避免這種情況,電源需要按正確的順序上電。使用標(biāo)準(zhǔn)DC-DC轉(zhuǎn)換器上的使能引腳,可以輕松實(shí)現(xiàn)簡單的上電時(shí)序控制。然而,器件關(guān)斷通常也需要時(shí)序控制。僅執(zhí)行使能引腳時(shí)序控制,很難取得良好的結(jié)果。更好的解決辦法是使用具有高級集成時(shí)序控制功能的PMIC,例如 ADP5014。圖2中用紅色表示的特殊電路模塊支持調(diào)整上電和關(guān)斷時(shí)序。
圖2. ADP5014 PMIC集成了對靈活控制上電/關(guān)斷時(shí)序的支持。
圖3顯示了利用此器件實(shí)現(xiàn)的時(shí)序控制。通過ADP5014上的延遲(DL)引腳可以輕松調(diào)整上電和關(guān)斷時(shí)序的時(shí)間延遲。
如果使用多個(gè)單獨(dú)的電源,增加時(shí)序控制芯片便可實(shí)現(xiàn)所需的上電/關(guān)斷順序。一個(gè)例子是LTC2924,它既能控制DC-DC轉(zhuǎn)換器的使能引腳來打開和關(guān)閉電源,也能驅(qū)動(dòng)高端N溝道MOSFET來將FPGA與某個(gè)電壓軌連接和斷開。
圖3. 多個(gè)FPGA電源電壓的啟動(dòng)和關(guān)斷順序。
電壓軌單調(diào)上升
除了電壓時(shí)序之外,啟動(dòng)過程中還可能要求電壓單調(diào)上升。這意味著電壓僅線性上升,如圖4中的電壓A所示。此圖中的電壓B是電壓非單調(diào)上升的例子。在啟動(dòng)過程中,當(dāng)電壓上升到一定電平時(shí)負(fù)載開始拉大電流,就會(huì)發(fā)生這種情況。防止這種情況的一種辦法是延長電源的軟啟動(dòng)時(shí)間,并選擇能夠快速提供大量電流的電源轉(zhuǎn)換器。
圖4. 電壓A單調(diào)上升,電壓B非單調(diào)上升。
快速電源瞬變
FPGA的另一個(gè)特點(diǎn)是它會(huì)非常迅速地開始抽取大量電流。這會(huì)在電源上造成很高的負(fù)載瞬變。出于這個(gè)原因,許多FPGA需要大量的輸入電壓去耦。陶瓷電容非??拷赜迷谄骷腣CORE和GND引腳之間。高達(dá)1 mF的值非常常見。如此高電容有助于降低對電源提供非常高峰值電流的需求。但是,許多開關(guān)穩(wěn)壓器和LDO規(guī)定了最大輸出電容。FPGA的輸入電容要求可能超過電源允許的最大輸出電容。
電源不喜歡非常大的輸出電容,因?yàn)樵趩?dòng)期間,開關(guān)穩(wěn)壓器的輸出電容看來像是短路的。對此問題有一個(gè)解決辦法。較長的軟啟動(dòng)時(shí)間可以讓大電容組上的電壓穩(wěn)定地升高,電源不會(huì)進(jìn)入短路限流模式。
圖5. 很多FPGA的輸入電容要求。
一些電源轉(zhuǎn)換器不喜歡過大輸出電容的另一個(gè)原因是該電容值會(huì)成為調(diào)節(jié)環(huán)路的一部分。集成環(huán)路補(bǔ)償?shù)霓D(zhuǎn)換器不允許輸出電容過大,以防止穩(wěn)壓器的環(huán)路不穩(wěn)定。在高端反饋電阻上使用前饋電容常??梢杂绊懣刂骗h(huán)路,如圖6所示。
圖6. 當(dāng)沒有環(huán)路補(bǔ)償引腳可用時(shí),利用前饋電容可以調(diào)節(jié)控制環(huán)路。
針對電源的負(fù)載瞬變和啟動(dòng)行為,開發(fā)工具鏈(包括LTpower-CAD,尤其是LTspice)非常有幫助。該工具可以很好的建模和仿真,從而有效實(shí)現(xiàn)FPGA的大輸入電容與電源的輸出電容的去耦。圖6展示了這一概念。雖然POL(負(fù)載端)電源的位置往往靠近負(fù)載,但在電源和FPGA輸入電容之間常常存在一些PCB走線。當(dāng)電路板上有多個(gè)彼此相鄰的FPGA輸入電容時(shí),離電源最遠(yuǎn)的那些電容對電源傳遞函數(shù)的影響較小,因?yàn)樗鼈冎g不僅存在一些電阻,還存在寄生走線電感。這些寄生電感允許FPGA的輸入電容大于電源輸出電容的最大限值,即使所有電容都連接到電路板上的同一節(jié)點(diǎn)也無妨。在LTspice中,可以將寄生走線電感添加到原理圖中,并且可以模擬這些影響。當(dāng)電路建模中包含足夠的寄生元件時(shí),仿真結(jié)果接近實(shí)際結(jié)果。
圖7. 電源輸出電容與FPGA輸入電容之間的寄生去耦。
電壓精度
FPGA電源的電壓精度通常要求非常高。3%的變化容差帶是相當(dāng)常見的。例如,為使0.85 V的Stratix V內(nèi)核電壓軌保持在3%的電壓精度窗口內(nèi),要求全部容差帶僅為25.5 mV。這個(gè)小窗口包括負(fù)載瞬變后的電壓變化以及直流精度。同樣,對于此類嚴(yán)格要求,包括LTpowerCAD和LTspice在內(nèi)的可用電源工具鏈在電源設(shè)計(jì)過程中非常重要。
最后一點(diǎn)建議是關(guān)于FPGA輸入電容的選擇。為了快速提供大電流,通常選擇陶瓷電容。此類電容很適合這種用途,但需要小心選擇,使其真實(shí)電容值不隨直流偏置電壓而下降。一些陶瓷電容,尤其是Y5U型,當(dāng)直流偏置電壓接近其最大額定直流電壓時(shí),其真實(shí)電容值會(huì)降低到只有標(biāo)稱值的20%。
推薦閱讀:
特別推薦
- 學(xué)子專區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來提高工業(yè)功能安全合規(guī)性?
- 如何通過配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動(dòng)化多通道測試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- 探索新能源汽車“芯”動(dòng)力:盡在2025廣州國際新能源汽車功率半導(dǎo)體技術(shù)展
- 不容錯(cuò)過的汽車電子盛會(huì)︱AUTO TECH China 2025第十二屆廣州國際汽車電子技術(shù)博覽會(huì)
- 基于 SiC 的三相電機(jī)驅(qū)動(dòng)開發(fā)和驗(yàn)證套件
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
- AI不斷升級,SSD如何扮演關(guān)鍵角色
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢想電子
模擬鎖相環(huán)
耐壓測試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池