新型諧波分析方法提高智能電表的精度并降低計算開銷
發(fā)布時間:2020-07-22 來源:Petre Minciunescu和Gabriel Antonesei 責(zé)任編輯:wenwei
【導(dǎo)讀】隨著智能電表、智能電網(wǎng)和分布式發(fā)電日益盛行,電能質(zhì)量監(jiān)控變得越來越重要。對電流和電壓信號進行諧波分析,電表就能獲得關(guān)鍵電能質(zhì)量指標(biāo)的信息,包括負(fù)載或電源的狀態(tài)等,從而支持預(yù)防性維護或系統(tǒng)優(yōu)化。
諧波的存在越來越令能源提供商和消費者擔(dān)心,因為過大的諧波電流可能導(dǎo)致電源變壓器、無功功率補償器和零線過熱,以及保護繼電器的誤觸發(fā)。諧波電壓和電流還可能干擾在附近工作、對大諧波發(fā)生器敏感的設(shè)備。
為了進行諧波分析,開發(fā)人員傳統(tǒng)上使用數(shù)字信號處理器(DSP)來實現(xiàn)某種形式的傅里葉算法或帶通濾波。本文提出一種新方法——自適應(yīng)實時監(jiān)控(ARTM),并且會比較該方法與FFT算法和帶通濾波。ADI公司新一代電能應(yīng)用產(chǎn)品將采用ARTM技術(shù)。
傅里葉方法
在電能計量或電源質(zhì)量監(jiān)控系統(tǒng)中執(zhí)行諧波分析時,會同時對相電流和電壓進行采樣,然后進行處理,計算基波和諧波成分的電源質(zhì)量,包括:有功、無功、視在功率、有效值、功率因數(shù)和諧波失真。對此,人們會立刻想到快速傅里葉變換(FFT)分析,其程序如圖1所示,說明如下:
● 確定基波成分的周期。這一耗時的過程通常采用如下方式實現(xiàn):對相電壓進行低通濾波以隔離基波,然后測量兩個相繼過零點之間的時間。確定該周期過程中的任何誤差都會影響諧波的幅度和相位誤差。
● 修改采樣頻率以便在每個周期獲得2N個樣本。這意味著要使用采樣頻率可變的模數(shù)轉(zhuǎn)換器。
● 采集對應(yīng)于一個或多個周期的2N個樣本。
● 執(zhí)行FFT算法。獲取多個周期的樣本可提高計算精度,但會給DSP帶來更重的負(fù)擔(dān),并且會使整體響應(yīng)變慢。
圖1. 實現(xiàn)FFT算法所需的步驟
根據(jù)基波周期修改采樣頻率會影響電表中執(zhí)行的其它計算。電能計算包括許多濾波器,濾波器的系數(shù)計算與采樣頻率相關(guān),這就需要實現(xiàn)一個能夠動態(tài)調(diào)整此類系數(shù)的完整計量方案,但采用Goertzel算法可以避免這種麻煩。這種方法不要求每周期的樣本數(shù)等于 2N,因此采樣頻率可以保持恒定,與基波周期無關(guān)。實現(xiàn)這種算法的步驟如圖 2 所示,說明如下:
● 像FFT方法一樣確定基波成分的周期。
● 采樣頻率保持恒定,每個周期獲取一定數(shù)量的樣本。
● 根據(jù)每個周期的樣本數(shù)計算Goertzel算法所用的系數(shù)。
● 執(zhí)行傅里葉變換。
圖2. 實現(xiàn)Goertzel算法所需的步驟
帶通濾波方法
使用帶通濾波器可能是最簡單的諧波分析方法,只需測量相電流和電壓并在一個諧波周圍應(yīng)用窄帶濾波器。如果并聯(lián)采用多個濾波器,則可以同時分析多個諧波。實現(xiàn)這種方法的步驟如圖3所示,說明如下:
● 像上述方法一樣確定基波的周期。由于可能會錯失較高諧波的目標(biāo)諧波頻率,因此需要大幅提高這種測量的精度,這意味著必須為兩個相繼過零點之間的時間濾波分配更多時間。
● 根據(jù)基波周期計算濾波器系數(shù)。
● 在目標(biāo)諧波頻率對相電流和電壓進行濾波,然后計算相應(yīng)的有效值。這種方法的一個缺點是只能保留諧波的幅度信息,而無法保留任何相位信息。因此,它無法計算諧波功率、功率因數(shù)和諧波失真。
圖3. 實現(xiàn)帶通濾波的步驟
自適應(yīng)實時監(jiān)控(ARTM)
電網(wǎng)的基波頻率可能隨著時間而漂移,如果諧波分析儀能夠自動跟蹤頻率的變化,而無需用戶干預(yù),那么將非常有利。ARTM連續(xù)估算基波頻率的可能值,并將其與電壓線上的實際頻率進行比較。從這種比較得到的任何誤差都將用作反饋因數(shù),以提高或降低估算頻率的值。這基本上就是ARTM的自適應(yīng)原理。
根據(jù)估算的頻率或其整數(shù)倍頻率,對選定相電壓和電流執(zhí)行實時頻譜成分提取程序,從而產(chǎn)生一組與估算頻率或其整數(shù)倍頻率上存在的能量成比例的值。進一步的信號處理可以提供基波或基波整數(shù)倍頻率(事實上是諧波)上的實時功率和有效值。
對于三相系統(tǒng),每個相電壓都有專用的獨立頻率估算器。因此,即使某個相電壓消失,用戶仍然可以選擇另一個相位來估算電網(wǎng)的頻率,并將其用于ARTM程序中。
整數(shù)倍頻系數(shù)靈活地確定要監(jiān)控哪一個諧波,其優(yōu)點是可以將所有DSP計算資源專門用于監(jiān)控目標(biāo)諧波。相比之下,F(xiàn)FT方法能夠同時計算頻譜中多個頻率上的值,但要消耗更多資源。為了實現(xiàn)同樣的性能,存儲FFT算法所用樣本需要的存儲器量明顯大于本文提出的實時方法。
如果在監(jiān)控某一諧波的同時也監(jiān)控基波值,那么監(jiān)控將變得更有效和更有意義:由此便能計算電流和電壓有效值成分的諧波失真(HD)比,該指標(biāo)有時比絕對值更有意義。事實上,從純理論性DSP角度看,這是一種被廣泛接受的歸一化數(shù)據(jù)呈現(xiàn)方法。在進一步的處理中,對一定范圍的諧波指數(shù)執(zhí)行HD值掃描,將所得的值相加,便可計算出總諧波失真(THD)。
除了頻率范圍內(nèi)的幅度響應(yīng)以外,傳統(tǒng)的完整諧波分析儀還應(yīng)提供有關(guān)一定頻率下相位響應(yīng)的信息。ARTM以計算功率因數(shù)的形式提供相位信息,功率因數(shù)指有功功率與視在功率之比。ARTM計算與基波頻率和各諧波頻率相對應(yīng)的功率因數(shù),對應(yīng)于基波頻率的功率因數(shù)就是所謂“位移功率因數(shù)”。實時獲得這些值非常有用,可以將其看作電源質(zhì)量的全局性指標(biāo)。對于試圖實現(xiàn)控制環(huán)路,將功率因數(shù)保持在一定范圍內(nèi)的系統(tǒng),這些值也很有用。
實時計算有功、無功和視在功率的另一個好處是可以通過累加獲得基波或諧波上的能量值。利用該信息,用戶可以分析總能耗在基波成分和諧波成分之間是如何分配的。
在三相系統(tǒng)中,特別是在各種非線性負(fù)載引起三次諧波序列(三次諧波的奇數(shù)倍數(shù))的情況下,對零線電流和相電流之和進行諧波分析也是有意義的。三次諧波序列的凈效應(yīng)具有可加性,因而零線最終可能會承載超出設(shè)計值的電流,導(dǎo)致過熱甚至起火。在三相三角形變壓器中,三次諧波序列引起的循環(huán)電流可能導(dǎo)致繞組過熱,從而引發(fā)問題。而對零線電流和相電流之和的諧波成分進行監(jiān)控,就能幫助判斷是否存在這些潛在的不平衡問題。
總之,可以說ARTM具有實時監(jiān)控或控制系統(tǒng)相關(guān)的所有優(yōu)勢。而且,由于ARTM將大部分DSP資源集中在目標(biāo)諧波的監(jiān)控上,因此效率更高、性能更佳。
為了獲得完整的諧波頻譜,可以執(zhí)行頻率掃描。
圖4. 實現(xiàn)自適應(yīng)實時監(jiān)控的步驟
表1綜合比較了本文所述的各種方法。帶通濾波和ARTM可用來實時監(jiān)控基波和諧波成分。如果電力線的基波頻率發(fā)生變化,ARTM方法已被證明能夠以足夠高的精度即時做出響應(yīng)。由于需要存儲樣本,F(xiàn)FT的最終實現(xiàn)方案占用的存儲器非常大,其它方法則相當(dāng)小。就結(jié)果的精度而言,ARTM方法是非常高,Goertzel算法和帶通濾波器居中,F(xiàn)FT最低。
表1
推薦閱讀:
特別推薦
- 學(xué)子專區(qū) - ADALM2000實驗:多相濾波電路
- 如何使用高性能監(jiān)控電路來提高工業(yè)功能安全合規(guī)性?
- 如何通過配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動化多通道測試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動機器人設(shè)計指南,看完秒懂
技術(shù)文章更多>>
- 探索新能源汽車“芯”動力:盡在2025廣州國際新能源汽車功率半導(dǎo)體技術(shù)展
- 不容錯過的汽車電子盛會︱AUTO TECH China 2025第十二屆廣州國際汽車電子技術(shù)博覽會
- 基于 SiC 的三相電機驅(qū)動開發(fā)和驗證套件
- 自主移動機器人設(shè)計指南,看完秒懂
- AI不斷升級,SSD如何扮演關(guān)鍵角色
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
控制變壓器
控制模塊
藍牙
藍牙4.0
藍牙模塊
浪涌保護器
雷度電子
鋰電池
利爾達
連接器
流量單位
漏電保護器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢想電子
模擬鎖相環(huán)
耐壓測試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池