在側(cè)軸模式下使用MagAlpha旋轉(zhuǎn)磁傳感器
發(fā)布時(shí)間:2021-03-08 責(zé)任編輯:wenwei
【導(dǎo)讀】之前的文章中,我們聊到了磁鐵的類型以及其如何在同軸模式下與MPS MagAlpha傳感器一起使用。本文將在這里探討另一種“側(cè)軸”模式拓?fù)洹PS MagAlpha傳感器在IC的中心使用了一系列霍爾陣列,該霍爾元件可感應(yīng)到來自旋轉(zhuǎn)磁體磁場(chǎng)的水平矢量。這種磁場(chǎng)通常位于傳感器上方或側(cè)面的一對(duì)徑向磁化的磁極(見圖1)。
圖 1:MagAlpha 傳感器同軸和側(cè)軸模式
側(cè)軸拓?fù)溆袃煞N形式:一種為“標(biāo)準(zhǔn)”側(cè)軸模式,其傳感器封裝表面與磁鋼的旋轉(zhuǎn)軸相互垂直;另一種為“正交”側(cè)軸模式,其傳感器封裝表面與磁鋼的旋轉(zhuǎn)軸平行。與同軸模式相比,這兩種設(shè)計(jì)過程中都需要更多的考慮,而MPS 磁仿真工具可以提供一種有效的方法,能在進(jìn)行真正的機(jī)械設(shè)計(jì)之前對(duì)方案進(jìn)行性能評(píng)估。
介紹
當(dāng)將MagAlpha傳感器與旋轉(zhuǎn)軸一側(cè)的磁鐵協(xié)同工作時(shí),霍爾陣列會(huì)同時(shí)看到徑向磁場(chǎng)分量Br和切向分量Bt(或者在正交側(cè)軸的情況下看到垂直分量Bz)。最常見的側(cè)軸拓?fù)浣Y(jié)構(gòu)使用徑向極化的環(huán)形磁鐵(見圖2)。
在這種結(jié)構(gòu)中,徑向場(chǎng)Br的大小通常大于切向分量Bt。當(dāng)傳感器感應(yīng)到大小不相等的兩個(gè)磁場(chǎng)時(shí),隨著磁鋼的旋轉(zhuǎn),角度輸出將變?yōu)榉蔷€性。所以,必須對(duì)兩個(gè)場(chǎng)的大小進(jìn)行歸一化,以便傳感器感應(yīng)到大小恒定的旋轉(zhuǎn)場(chǎng)矢量。MagAlpha傳感器集成了偏置電流微調(diào)(BCT)寄存器,可以平衡兩個(gè)磁場(chǎng)的場(chǎng)幅,從而獲得線性角度響應(yīng)。更多詳細(xì)信息,請(qǐng)參考 應(yīng)用說明 “在側(cè)軸貼裝中使用 MagAlpha 傳感器”。
圖 2:徑向極化的兩極環(huán)周圍的徑向和切向磁場(chǎng)
經(jīng)過上述微調(diào)之后,由于X軸或Y軸上的感應(yīng)增益降低,傳感器會(huì)感應(yīng)到較低的合成磁場(chǎng)。在標(biāo)準(zhǔn)側(cè)軸拓?fù)渲?,由于IC封裝有一定厚度,所以傳感器霍爾陣列也會(huì)離磁環(huán)表面比較遠(yuǎn)。因此,磁環(huán)設(shè)計(jì)必須留有足夠的剩磁(常用BR表示),以滿足傳感器的最低磁場(chǎng)要求。由于鐵氧體和塑性鐵氧體磁體在200mT至300mT BR范圍內(nèi)的剩磁較低,它們無(wú)法很好地在側(cè)軸模式中工作,尤其是在BCT微調(diào)引起的感應(yīng)增益降低之后。
為了實(shí)現(xiàn)充足的磁場(chǎng)強(qiáng)度,磁環(huán)通常必須由具有較高初始剩磁的材料制成,例如燒結(jié)(約0.9T至1.4T BR)或鍵合聚合物(約0.6T至0.7T BR)的釹鐵硼(NdFeB)。直徑較大的磁環(huán),采用鍵合的聚合物材料更具成本效益,但與同等尺寸的燒結(jié)環(huán)相比,鍵合的聚合物環(huán)的場(chǎng)強(qiáng)約為一半。所以必須調(diào)整磁環(huán)的尺寸,才能確保在選定的距離以及BCT調(diào)整后滿足傳感器的最低磁場(chǎng)強(qiáng)度的要求。
MagAlpha系列集成了兩個(gè)用來優(yōu)化側(cè)軸模式的傳感器:MA710和MA310,當(dāng)磁場(chǎng)強(qiáng)度太低時(shí),這些產(chǎn)品具有更高的內(nèi)部增益,可適應(yīng)最低15mT的最小場(chǎng)(大多數(shù)MagAlpha系列通常為30mT至40mT)。
點(diǎn)擊這里,查看上述示例中使用的MagAlpha系列產(chǎn)品磁仿真工具
仿真器工具可以支持MagAlpha系列所有磁鐵類型以及傳感器到磁體的拓?fù)洹K苡行У卦突驮u(píng)估不同磁鐵和安裝位置的傳感器性能,可避免反復(fù)試驗(yàn)。機(jī)械和電磁公差對(duì)系統(tǒng)的影響也可以通過工具高級(jí)設(shè)置選項(xiàng)輸入,以評(píng)估對(duì)角度分辨率性能的影響。
圖3 顯示了使用結(jié)合釹環(huán)的側(cè)軸設(shè)計(jì)示例。環(huán)的內(nèi)徑為20mm,外徑為30mm,高度為2mm。 在這個(gè)示例中,該環(huán)具有簡(jiǎn)單的兩極徑向磁化的700mT剩磁。在標(biāo)準(zhǔn)的側(cè)軸拓?fù)渲惺褂肕A710傳感器,傳感器組件理想地放置在環(huán)形磁鋼的側(cè)面,以使霍爾陣列恰好位于磁鐵高度的一半。MA710 QFN傳感器封裝的標(biāo)稱高度為0.9mm,內(nèi)部霍爾陣列位于封裝表面下方0.5mm處。因此可以得到垂直參數(shù)Z為0mm。
圖 3:標(biāo)準(zhǔn)側(cè)軸拓?fù)銶A710角度傳感器
使用仿真器掃描從r = 16.5mm到20mm的距離,傳感器的合適位置應(yīng)在r = 17mm處(見圖4)。在此位置,傳感器在IC封裝的邊緣與環(huán)形磁鋼表面之間的氣隙為0.5mm(滿足安裝最小誤差),而且正切磁場(chǎng)BT大約為18mT(相對(duì)比較大)。徑向磁場(chǎng)Br在大約82mT,比BT大得多,這將導(dǎo)致傳感器輸出角度非線性,需要通過BCT寄存器進(jìn)行一些校正以減小徑向磁場(chǎng)的幅度。選定r=17mm后,仿真器可以計(jì)算出該位置需要的BCT寄存器數(shù)值為200。將此值應(yīng)用于傳感器,可得到分辨率約為11.3位(3-sigma)的解決方案。
圖 4:標(biāo)準(zhǔn)側(cè)軸拓?fù)渲袀鞲衅饔^測(cè)到的磁場(chǎng)與半徑的仿真器圖
圖5 顯示了仿真器總結(jié)報(bào)告。
圖 5:磁鋼仿真工具報(bào)告
值得注意的是,在側(cè)軸模式下,機(jī)械公差和磁化公差對(duì)傳感器線性度的影響要大得多。因此,必須考慮這些公差以確保符合最終設(shè)計(jì)期望。使用仿真器進(jìn)行第一遍查找初始設(shè)置后,建議通過高級(jí)參數(shù)部分添加各種公差來執(zhí)行一系列進(jìn)一步的仿真器迭代。有關(guān)公差及其影響的討論,請(qǐng)參見應(yīng)用說明 AN142(“側(cè)軸配置中的線性度”)
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 學(xué)子專區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來提高工業(yè)功能安全合規(guī)性?
- 如何通過配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動(dòng)化多通道測(cè)試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- 基于 SiC 的三相電機(jī)驅(qū)動(dòng)開發(fā)和驗(yàn)證套件
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
- AI不斷升級(jí),SSD如何扮演關(guān)鍵角色
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 大電流、高性能降壓-升壓穩(wěn)壓器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
MediaTek
MEMS
MEMS傳感器
MEMS麥克風(fēng)
MEMS振蕩器
MHL
Micrel
Microchip
Micron
Mic連接器
Mi-Fi
MIPS
MLCC
MMC連接器
MOSFET
Mouser
Murata
NAND
NFC
NFC芯片
NOR
ntc熱敏電阻
OGS
OLED
OLED面板
OmniVision
Omron
OnSemi
PI
PLC