【導(dǎo)讀】單端初級(jí)電感器轉(zhuǎn)換器 (SEPIC),Zeta轉(zhuǎn)換器和雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器具有正向或非反向輸出。然而,與基本反向降壓-升壓轉(zhuǎn)換器相比,所有這三個(gè)非反向拓?fù)浣Y(jié)構(gòu)具有額外的功率元件,并且效率有所下降。本文介紹對(duì)這些降壓-升壓轉(zhuǎn)換器的操作原理、電流應(yīng)力和功率損耗分析,并且提出高效非反向降壓-升壓轉(zhuǎn)換器的設(shè)計(jì)標(biāo)準(zhǔn)。
介紹
降壓-升壓轉(zhuǎn)換器被廣泛應(yīng)用于工業(yè)用個(gè)人計(jì)算機(jī) (IPC),銷(xiāo)售點(diǎn) (POS) 系統(tǒng),和汽車(chē)啟停系統(tǒng)。在這些應(yīng)用中,輸入電壓可以高于或低于所需的輸出電壓。基本反向降壓-升壓轉(zhuǎn)換器具有一個(gè)相對(duì)于接地的負(fù)輸出電壓。單端初級(jí)電感器轉(zhuǎn)換器 (SEPIC),Zeta轉(zhuǎn)換器和雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器具有正向或非反向輸出。然而,與基本反向降壓-升壓轉(zhuǎn)換器相比,所有這三個(gè)非反向拓?fù)浣Y(jié)構(gòu)具有額外的功率元件,并且效率有所下降。本文介紹對(duì)這些降壓-升壓轉(zhuǎn)換器的操作原理、電流應(yīng)力和功率損耗分析,并且提出高效非反向降壓-升壓轉(zhuǎn)換器的設(shè)計(jì)標(biāo)準(zhǔn)。
反向降壓-升壓轉(zhuǎn)換器
圖表1顯示了基本反向降壓-升壓轉(zhuǎn)換器的電路原理圖,連同連續(xù)傳導(dǎo)模式 (CCM) 下的典型電壓和電流波形。除了輸入和輸出電容器,功率級(jí)由一個(gè)功率金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管 (MOSFET),一個(gè)二極管,和一個(gè)電感器組成。當(dāng)MOSFET (Q1) 接通時(shí) (ON),流經(jīng)電感器 (L1) 的電壓為VIN,而電感器電流的斜升速率與VIN的上升速率成正比。這導(dǎo)致電感器內(nèi)的電能累積。當(dāng)Q1接通時(shí),輸出電容器提供全部負(fù)載電流。當(dāng)Q1關(guān)閉時(shí),二極管 (D1) 被正向偏壓,并且電感器電流的下降速度與VOUT的下降速度成正比。在Q1斷開(kāi)時(shí),電能從電感器被傳送到輸出負(fù)載和電容器。
CCM模式下的反向降壓-升壓轉(zhuǎn)換器的電壓轉(zhuǎn)換率可表示為:
在這里,D是Q1的占空比,并且始終在0至1的范圍內(nèi)。等式1表示輸出電壓的幅度可以高于(此時(shí)D>0.5)或低于(此時(shí)D<0.5)輸入電壓。然而,輸出電壓與輸入電壓的極性始終相反。
傳統(tǒng)非反向降壓-升壓轉(zhuǎn)換器
反向降壓-升壓轉(zhuǎn)換器不能滿(mǎn)足需要正向輸出電壓的應(yīng)用的要求。SEPIC,Zeta,和雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器是三種常見(jiàn)的非反向降壓-升壓拓?fù)浣Y(jié)構(gòu)。Zeta轉(zhuǎn)換器,也被稱(chēng)為反向SEPIC,它與SEPIC相類(lèi)似,但是不如SEPIC那么受歡迎,其原因在于這類(lèi)轉(zhuǎn)換器需要一個(gè)會(huì)增加電路復(fù)雜度的高側(cè)驅(qū)動(dòng)器。
圖表1.反向降壓-升壓轉(zhuǎn)換器
在圖表2中顯示了一個(gè)SEPIC轉(zhuǎn)換器和其CCM模式下的理想波形。一個(gè)SEPIC轉(zhuǎn)換器的電壓轉(zhuǎn)換率為:
等式2表示正向輸出電壓和降壓-升壓能力。與一個(gè)反向降壓-升壓轉(zhuǎn)換器相類(lèi)似,一個(gè)SEPIC轉(zhuǎn)換器具有一個(gè)單個(gè)MOSFET (Q1) 和一個(gè)單個(gè)二極管 (D1)。SEPIC轉(zhuǎn)換器中的MOSFET和二極管對(duì)于電壓和電流的需求與反向降壓-升壓轉(zhuǎn)換器中此類(lèi)元件的電壓和電流需求相類(lèi)似。同樣地,MOSFET和二極管的功率損耗也是相似的。在另一方面,SEPIC轉(zhuǎn)換器具有一個(gè)額外的電感器 (L2) 和一個(gè)額外的交流耦合電容器 (Cp)。
在一個(gè)SEPIC轉(zhuǎn)換器中,L1的平均電感器電流等于輸入電流 (IIN),而L2的平均電感器電流等于輸出電流 (IOUT)。相反地,反向降壓-升壓轉(zhuǎn)換器中的單個(gè)電感器的電流值為IIN + IOUT的平均值。耦合電容器上會(huì)出現(xiàn)相對(duì)于輸入電流和輸出電流的高值均方根 (RMS) 電流,這會(huì)生成額外的功率損耗,并減少轉(zhuǎn)換器的總體效率。
為了減少功率損耗,需要具有低值等效串聯(lián)電阻 (ESR) 的陶瓷電容器,而這樣通常會(huì)使成本增加。SEPIC轉(zhuǎn)換器中與額外耦合電容器相耦合的額外電感器會(huì)增加印刷電路板 (PCB) 的尺寸以及總體解決方案成本。耦合電感器可被用來(lái)替代兩個(gè)單獨(dú)的電感器,以便減少PCB尺寸。然而,相對(duì)于單獨(dú)的電感器,現(xiàn)貨供應(yīng)的耦合電感器的選擇范圍有限。有時(shí)需要定制設(shè)計(jì),這一也增加了成本和交貨時(shí)間。
圖表2.SEPIC轉(zhuǎn)換器
一個(gè)傳統(tǒng)雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器使用一個(gè)單個(gè)電感器(圖表3)。然而,它比反向降壓-升壓轉(zhuǎn)換器多了一個(gè)MOSFET (Q2) 和一個(gè)二極管 (D2)。通過(guò)同時(shí)接通和斷開(kāi)Q1和Q2,轉(zhuǎn)換器運(yùn)行在降壓-升壓模式,而電壓轉(zhuǎn)換率也可由等式2計(jì)算得出。這可以確保雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器執(zhí)行非反向轉(zhuǎn)換。在圖表3中顯示了運(yùn)行在降壓-升壓模式和CCM模式下的雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器的理想波形。在Q1和D1上都出現(xiàn)值為VIN的電壓應(yīng)力,而Q2和D2上的電壓應(yīng)力值均為VOUT。在忽略電感器紋波電流的情況下,Q1,Q2,D1和 L1上的電流應(yīng)力值均為IIN + IOUT。相對(duì)較多的功率器件數(shù)量和降壓-升壓模式中的高電流應(yīng)力值會(huì)妨礙轉(zhuǎn)換器的高效率。
雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器的工作模式優(yōu)化
雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器是一個(gè)降壓轉(zhuǎn)換器與其后面的一個(gè)升壓轉(zhuǎn)換器的級(jí)聯(lián)組合。除了上面提到的降壓-升壓模式,Q1和Q2中具有完全一樣的柵極控制信號(hào),雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器還可以運(yùn)行在降壓或升壓模式中。通過(guò)在VIN高于VOUT時(shí)使轉(zhuǎn)換器運(yùn)行在降壓模式,并且在VIN低于VOUT時(shí)使轉(zhuǎn)換器運(yùn)行在升壓模式,可實(shí)現(xiàn)降壓-升壓功能。
圖表3.降壓-升壓運(yùn)行模式中的雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器
在降壓模式下,Q2被控制為始終處于斷開(kāi)狀態(tài),并且與典型降壓轉(zhuǎn)換器中一樣,通過(guò)控制Q1來(lái)調(diào)節(jié)輸出電壓。圖表4中顯示了降壓模式中的等效電路和CCM模式中的相應(yīng)理想波形。電壓轉(zhuǎn)換率與典型降壓轉(zhuǎn)換器的轉(zhuǎn)換率一樣:
在這里D是Q1的占空比。在降壓模式下,由于D一直小于1,所以輸出電壓始終低于輸入電壓。三個(gè)方面的原因使得降壓模式的效率有可能高于降壓-升壓模式的效率。首先,Q2在降壓模式中始終處于斷開(kāi)狀態(tài),這意味著其中沒(méi)有功率耗散。第二點(diǎn),在降壓模式下,Q1,D1和L1中的電流應(yīng)力值只是IOUT,而這個(gè)值要低于降壓-升壓模式中的值IIN + IOUT,這就有可能減少功率損耗。第三點(diǎn),雖然D2的傳導(dǎo)損耗保持不變,由于D2始終處于傳導(dǎo)狀態(tài),降壓模式中的反向恢復(fù)損耗被消除。
通過(guò)將Q1一直保持在接通狀態(tài),D1被反向偏置偏壓并且保持?jǐn)嚅_(kāi)狀態(tài),然后雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器運(yùn)行在升壓模式下。與典型升壓轉(zhuǎn)換器相類(lèi)似,通過(guò)控制Q2來(lái)調(diào)節(jié)輸出電壓。圖表5中顯示了升壓模式下的等效電路,以及CCM模式中的相應(yīng)理想波形。電壓轉(zhuǎn)換率與典型升壓轉(zhuǎn)換器中的轉(zhuǎn)換率一樣:
在這里D是Q2的占空比。在升壓模式下,由于D始終大于零,輸出電壓一直大于輸入電壓。相似地,由于具有較少的運(yùn)行功率器件和更低的電流應(yīng)力值,在升壓模式下可以實(shí)現(xiàn)比降壓-升壓模式更高的效率。
圖表5.雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器的升壓模式運(yùn)行
高效雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器的實(shí)現(xiàn)
雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器可以運(yùn)行在降壓-升壓、降壓或升壓模式下。工作模式的不同組合可以用來(lái)實(shí)現(xiàn)升壓和降壓功能。需要合適的控制電路來(lái)確保所需的運(yùn)行模式。表格1中匯總了四個(gè)不同工作模式組合間的比較結(jié)果。純降壓-升壓模式的特點(diǎn)是控制最為簡(jiǎn)單,但是在VIN范圍內(nèi)的升壓和降壓轉(zhuǎn)換效率不高。
表格1.工作模式比較
降壓、降壓-升壓和升壓模式的組合有可能在VIN范圍內(nèi)實(shí)現(xiàn)高效率。然而,由于多個(gè)工作模式和導(dǎo)致的不同模式之間的轉(zhuǎn)換,其控制十分復(fù)雜。在很多應(yīng)用中,輸入電壓通常只在短時(shí)間內(nèi)會(huì)下降到低于輸出電壓的水平。在這些應(yīng)用中,升壓轉(zhuǎn)換效率不像降壓轉(zhuǎn)換效率那么關(guān)鍵。同樣地,降壓和降壓-升壓模式的組合很好地平衡了控制復(fù)雜度和效率之間的關(guān)系。
圖表6顯示了使用德州儀器 (TI) 生產(chǎn)的LM5118雙模式控制器來(lái)實(shí)現(xiàn)雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器的實(shí)際方法。這個(gè)轉(zhuǎn)換器在輸入電壓高于輸出電壓時(shí)充當(dāng)降壓轉(zhuǎn)換器的角色。隨著輸入電壓接近并超過(guò)輸出電壓,它轉(zhuǎn)變?yōu)榻祲?升壓模式。在降壓模式和降壓-升壓模式之間有一個(gè)較短的漸進(jìn)轉(zhuǎn)換區(qū)域,以便消除轉(zhuǎn)換期間對(duì)輸出電壓的干擾。
圖表6.雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器特有降壓和降壓-升壓工作模式
在這個(gè)示例中,標(biāo)稱(chēng)輸出電壓為12V。當(dāng)VIN高于15.5V時(shí),轉(zhuǎn)換器運(yùn)行在降壓模式。當(dāng)VIN下降到13.2V以下時(shí),轉(zhuǎn)換器的工作模式變?yōu)榻祲?升壓模式。當(dāng)VIN介于15.5V和13.2V之間時(shí),轉(zhuǎn)換器運(yùn)行在轉(zhuǎn)換模式。圖表7顯示了開(kāi)關(guān)節(jié)點(diǎn)1 (SW1) 和開(kāi)關(guān)節(jié)點(diǎn)2 (SW2) 的電壓波形。在降壓模式下 (VIN = 24V),SW2電壓保持恒定,這表示Q2被保持在斷開(kāi)狀態(tài)。相反地,Q2以及Q1在降壓-升壓模式中正在被切換 (VIN = 9V)。圖表8顯示負(fù)載電流為3A時(shí)相對(duì)于輸入電壓的效率。通過(guò)在降壓模式中運(yùn)行,轉(zhuǎn)換器可提高降壓轉(zhuǎn)換的效率。
結(jié)論
SEPIC,Zeta和雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器是三款常見(jiàn)的非反向降壓-升壓拓?fù)浣Y(jié)構(gòu),這些拓?fù)浣Y(jié)構(gòu)提供正向輸出以及升壓/降壓功能。當(dāng)運(yùn)行在降壓-升壓模式中時(shí),所有三個(gè)轉(zhuǎn)換器會(huì)經(jīng)歷高電流應(yīng)力和高傳導(dǎo)損耗。然而,通過(guò)使雙開(kāi)關(guān)降壓-升壓轉(zhuǎn)換器運(yùn)行在降壓模式或升壓模式,可減少電流應(yīng)力,并且能夠提高效率。