秦皇岛啦低网络技术有限公司

你的位置:首頁 > 互連技術 > 正文

解析巨磁電阻的工作原理及作用

發(fā)布時間:2019-01-12 責任編輯:lina

【導讀】巨磁阻效應是一種量子力學和凝聚體物理學現(xiàn)象,磁阻效應的一種,可以在磁性材料和非磁性材料相間的薄膜層(幾個納米厚)結構中觀察到。
  
什么是巨磁電阻
 
巨磁阻效應(Giant Magnetoresistance,縮寫:GMR)是一種量子力學和凝聚體物理學現(xiàn)象,磁阻效應的一種,可以在磁性材料和非磁性材料相間的薄膜層(幾個納米厚)結構中觀察到。
 
巨磁電阻現(xiàn)象
 
物質在一定磁場下電阻改變的現(xiàn)象,稱為“磁阻效應”,磁性金屬和合金材料一般都有這種磁電阻現(xiàn)象,通常情況下,物質的電阻率在磁場中僅產(chǎn)生輕微的減?。辉谀撤N條件下,電阻率減小的幅度相當大,比通常磁性金屬與合金材料的磁電阻值約高10余倍,稱為“巨磁阻效應”(GMR);而在很強的磁場中某些絕緣體會突然變?yōu)閷w,稱為“超巨磁阻效應”(CMR)。
 
如右圖所示,左面和右面的材料結構相同,兩側是磁性材料薄膜層(藍色),中間是非磁性材料薄膜層(橘色)。
 
左面的結構中,兩層磁性材料的磁化方向相同。
 
當一束自旋方向與磁性材料磁化方向都相同的電子通過時,電子較容易通過兩層磁性材料,都呈現(xiàn)小電阻。
 
當一束自旋方向與磁性材料磁化方向都相反的電子通過時,電子較難通過兩層磁性材料,都呈現(xiàn)大電阻。這是因為電子的自旋方向與材料的磁化方向相反,產(chǎn)生散射,通過的電子數(shù)減少,從而使得電流減小。
 
右面的結構中,兩層磁性材料的磁化方向相反。
 
當一束自旋方向與第一層磁性材料磁化方向相同的電子通過時,電子較容易通過,呈現(xiàn)小電阻;但較難通過第二層磁化方向與電子自旋方向相反的磁性材料,呈現(xiàn)大電阻。
 
當一束自旋方向與第一層磁性材料磁化方向相反的電子通過時,電子較難通過,呈現(xiàn)大電阻;但較容易通過第二層磁化方向與電子自旋方向相同的磁性材料,呈現(xiàn)小電阻。
 
解析巨磁電阻的工作原理及作用
 
巨磁電阻結構組成特點
 
1、巨磁電阻效應來自于載流電子的不同自旋狀態(tài)與磁場的作用不同,因而導致電阻值的變化。
 
2、如圖所示,多層GMR 結構中,無外磁場時,上下兩層鐵磁膜的磁矩是反平行耦合的。在足夠強的外磁場作用下,鐵磁膜的磁矩方向都與外磁場方向一致,外磁場使兩層鐵磁膜從反平行耦合變成了平行耦合。
 
解析巨磁電阻的工作原理及作用
 
巨磁電阻的應用
 
巨磁阻效應在高密度讀出磁頭、磁存儲元件上有著廣泛的應用。隨著技術的發(fā)展,當存儲數(shù)據(jù)的磁區(qū)越來越小,存儲數(shù)據(jù)密度越來越大,這對讀寫磁頭提出更高的要求。巨磁阻物質中電流的增大與減小,可以定義為邏輯信號的0與1,進而實現(xiàn)對磁性存儲裝置的讀取。巨磁阻物質可以將用磁性方法存儲的數(shù)據(jù),以不同大小的電流輸出,并且即使磁場很小,也能輸出足夠的電流變化,以便識別數(shù)據(jù),從而大幅度提高了數(shù)據(jù)存儲的密度。
 
巨磁阻效應被成功地運用在硬盤生產(chǎn)上。1994年,IBM公司研制成功了巨磁電阻效應的讀出磁頭,將磁盤記錄密度提高了17倍,從而使得磁盤在與光盤的競爭中重新回到領先地位。目前,巨磁阻技術已經(jīng)成為幾乎所有計算機、數(shù)碼相機和MP3播放器等的標準技術。
 
利用巨磁電阻物質在不同的磁化狀態(tài)下具有不同電阻值的特點,還可以制成磁性隨機存儲器(MRAM),其優(yōu)點是在不通電的情況下可以繼續(xù)保留存儲的數(shù)據(jù)。
 
除此之外,巨磁阻效應還應用于微弱磁場探測器。
 
 
推薦閱讀:
如何讓DSP數(shù)字振蕩器產(chǎn)生移相正弦波?
詳解電阻加熱的方法有哪幾種?
簡析電容傳感器原理 
在RF檢波器中的二極管為何是不可替代的?
意法半導體在CES 2019上展示下一代先進應用技術和解決方案
要采購薄膜么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

岐山县| 兴国县| 靖宇县| 武胜县| 布尔津县| 彭山县| 石门县| 汉寿县| 河曲县| 甘孜县| 罗山县| 抚顺市| 松潘县| 永定县| 乌鲁木齐市| 屏东县| 汾阳市| 沂源县| 安仁县| 玉屏| 灌云县| 云霄县| 苍梧县| 隆子县| 天气| 沙湾县| 共和县| 麟游县| 秭归县| 泰来县| 仙游县| 灵寿县| 赤城县| 西吉县| 峡江县| 合阳县| 东乡县| 忻州市| 周宁县| 津市市| 大同县|