【導(dǎo)讀】上一篇文章中,簡(jiǎn)單介紹了SiC MOSFET橋式結(jié)構(gòu)中柵極驅(qū)動(dòng)電路的開關(guān)工作帶來(lái)的VDS和ID的變化所產(chǎn)生的電流和電壓情況。本文將詳細(xì)介紹SiC MOSFET在LS導(dǎo)通時(shí)的動(dòng)作情況。
上一篇文章中,簡(jiǎn)單介紹了SiC MOSFET橋式結(jié)構(gòu)中柵極驅(qū)動(dòng)電路的開關(guān)工作帶來(lái)的VDS和ID的變化所產(chǎn)生的電流和電壓情況。本文將詳細(xì)介紹SiC MOSFET在LS導(dǎo)通時(shí)的動(dòng)作情況。
SiC MOSFET低邊開關(guān)導(dǎo)通時(shí)的Gate-Source間電壓的動(dòng)作
當(dāng)SiC MOSFET的LS導(dǎo)通時(shí),首先ID會(huì)變化(下述波形示意圖T1)。此時(shí)LS的ID沿增加方向、HS的ID沿減少方向流動(dòng),受下述等效電路圖中所示的事件(I)影響,在圖中所示的極性產(chǎn)生公式(1)的電動(dòng)勢(shì)。公式(1)與上一篇文章中使用的公式相同。該電動(dòng)勢(shì)引起的電流將源極側(cè)作為正極對(duì)CGS進(jìn)行充電,因此在LS會(huì)將VGS向下推,在HS會(huì)將VGS向負(fù)極側(cè)拉,使之產(chǎn)生負(fù)浪涌(波形示意圖VGS的T1)。
當(dāng)ID的變化結(jié)束時(shí),LS的VDS的電位降低(波形示意圖T2)。所以,公式(2)中的電流就像等效電路圖中的(II)-1、(II)-2那樣流動(dòng),并且VGS會(huì)分別引發(fā)下列公式(3)、(4)中的電壓上升。
VDS剛剛開始變化后,公式(3)的VGS上升為主,隨著時(shí)間的推移,公式(4)的VGS也開始上升。也就是說(shuō),MOSFET的CGD/CGS比、驅(qū)動(dòng)電路的RG_EXT、柵極驅(qū)動(dòng)信號(hào)圖形布線的電感值LTRACE具有很大影響。
如等效電路圖所示,HS中的(II)-2的電流ICGD2處于VGS提升方向。因此,本來(lái)應(yīng)該處于OFF狀態(tài)的HS因VGS的提升而開始了導(dǎo)通工作。這種現(xiàn)象稱為“誤啟動(dòng)”。當(dāng)HS發(fā)生誤啟動(dòng)時(shí),就會(huì)與LS的導(dǎo)通工作重疊,致使HS和LS的MOSFET同時(shí)導(dǎo)通,從而引發(fā)直通電流。
ICGD2會(huì)持續(xù)流動(dòng)到LS的導(dǎo)通工作結(jié)束,并被積蓄在LTRACE中,但會(huì)在VSW變化結(jié)束的時(shí)間點(diǎn)消失,LTRACE產(chǎn)生電動(dòng)勢(shì)。這就是事件(III)。受RG_EXT等開關(guān)條件影響,ICGD2可能會(huì)達(dá)到幾安培,并且該電動(dòng)勢(shì)可能會(huì)增加。
受上述事件(I)、(II)、(III)的影響,LS導(dǎo)通后的Gate-Source電壓呈現(xiàn)出波形示意圖中所示的動(dòng)作。波形示意圖和等效電路圖的相同編號(hào)表示同一事件。另外,圖中VGS的虛線波形表示理想的波形。
外置柵極電阻的影響
下面是SiC MOSFET橋式結(jié)構(gòu)的LS導(dǎo)通時(shí)的雙脈沖測(cè)試結(jié)果。(a)波形圖的外置柵極電阻RG_EXT為0Ω,(b)為10Ω。圖中的(I)、(II)、(III)同前面相應(yīng)編號(hào)的事件。
比較(a)和(b)的波形可以看出,RG_EXT越小,由事件(I)引起的VGS下降就越大。此外,由于開關(guān)速度非???,因此事件(III)在(a)中很突出;但由于RG_EXT為0Ω,因此幾乎沒有觀察到事件(II)的波形。另一方面,在(b)中,事件(II)-2和RG_EXT引起的VGS升程明顯。
從該結(jié)果可以清楚地看出,要想降低誘發(fā)LS導(dǎo)通時(shí)HS誤啟動(dòng)的事件(II)-2的VGS升程,就需要減小HS關(guān)斷時(shí)的外置柵極電阻RG_EXT。然而,多數(shù)情況下,HS和LS的RG_EXT是相同的,因此,當(dāng)減小RG_EXT時(shí),LS的dVDS/dt將增加,如公式(1)所示,HS的ICGD會(huì)增加。從公式(4)可以看出,結(jié)果會(huì)導(dǎo)致HS浪涌升高。
有一種對(duì)策方法是,使導(dǎo)通時(shí)和關(guān)斷時(shí)的RG_EXT分離,并且僅減小關(guān)斷時(shí)的RG_EXT。常規(guī)方法是使用二極管的方法,如右圖所示。使用這種方法,在導(dǎo)通狀態(tài)下工作的電阻只有RG_ON,而在關(guān)斷狀態(tài)下,二極管導(dǎo)通并成為RG_ON和RG_OFF的并聯(lián)電阻。因此,相對(duì)于導(dǎo)通時(shí)的電阻值,關(guān)斷時(shí)的電阻值變小。
另外,與最前面說(shuō)明中使用的波形示意圖不同,HS的VGS波形之所以在緊靠事件(I)之前的位置向正極側(cè)振蕩,是因?yàn)槭录?I)的電流開始流動(dòng)的瞬間LSOURCE引起的電動(dòng)勢(shì)在通過(guò)CGS后立即被觀測(cè)到了。
(來(lái)源:Rohm)
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)電話或者郵箱editor@52solution.com聯(lián)系小編進(jìn)行侵刪。
推薦閱讀:
安森美智能感知技術(shù)和方案助力工業(yè)自動(dòng)化創(chuàng)新
SiC MOSFET的柵極驅(qū)動(dòng)電路和Turn-on/Turn-off動(dòng)作