圖1:數(shù)字三相BLDC電機(jī)控制通常使用三對(duì)MOSFET,每對(duì)MOSFET為電機(jī)的一個(gè)繞組提供交流電壓。 (圖像:德州儀器)
如何使用高度集成的柵極驅(qū)動(dòng)器實(shí)現(xiàn)緊湊型電機(jī)控制系統(tǒng)的設(shè)計(jì)
發(fā)布時(shí)間:2020-12-23 責(zé)任編輯:lina
【導(dǎo)讀】采用鋰離子電池供電的高功率密度,高效率,三相無(wú)刷直流(BLDC)電機(jī)可實(shí)現(xiàn)無(wú)繩電動(dòng)工具,真空吸塵器和電動(dòng)自行車的開發(fā)。然而,為了節(jié)省更緊湊的機(jī)電設(shè)備的空間,設(shè)計(jì)人員面臨著進(jìn)一步縮小其電機(jī)控制電子設(shè)備的壓力。
采用鋰離子電池供電的高功率密度,高效率,三相無(wú)刷直流(BLDC)電機(jī)可實(shí)現(xiàn)無(wú)繩電動(dòng)工具,真空吸塵器和電動(dòng)自行車的開發(fā)。然而,為了節(jié)省更緊湊的機(jī)電設(shè)備的空間,設(shè)計(jì)人員面臨著進(jìn)一步縮小其電機(jī)控制電子設(shè)備的壓力。
這不是一項(xiàng)簡(jiǎn)單的任務(wù)。除了將驅(qū)動(dòng)器組件擠壓到狹小空間的明顯困難之外,將所有部件推得更緊密地增加了熱管理,當(dāng)然還有電磁干擾(EMI)問題。
電機(jī)控制電路設(shè)計(jì)人員可以做出更纖薄的設(shè)計(jì)通過轉(zhuǎn)向新一代高度集成的柵極驅(qū)動(dòng)器,這是電機(jī)控制系統(tǒng)中關(guān)鍵的元件。
本文將介紹BLDC電機(jī)在引入合適的柵極驅(qū)動(dòng)器之前的操作以及如何使用它們來克服緊湊型電機(jī)控制系統(tǒng)的設(shè)計(jì)挑戰(zhàn)。
構(gòu)建更好的電動(dòng)機(jī)
由于能源效率和節(jié)省空間的雙重商業(yè)壓力,電動(dòng)機(jī)設(shè)計(jì)迅速發(fā)展。數(shù)字控制的BLDC電機(jī)代表了這一演變的一個(gè)方面。電機(jī)的普及是由于使用電子換向,與傳統(tǒng)(電刷換向)直流電機(jī)相比,效率更高,對(duì)于以相同速度和負(fù)載運(yùn)行的電機(jī),效率提高了20%到30%。
這種改進(jìn)使BLDC電機(jī)能夠在給定的功率輸出下更小,更輕,更安靜。 BLDC電機(jī)的其他優(yōu)點(diǎn)包括出色的速度與轉(zhuǎn)矩特性,更動(dòng)態(tài)的響應(yīng),無(wú)噪音運(yùn)行以及更高的速度范圍。工程師們還推動(dòng)設(shè)計(jì)在更高的電壓和頻率下運(yùn)行,因?yàn)檫@樣可以使緊湊型電動(dòng)機(jī)完成與更大的傳統(tǒng)電機(jī)相同的工作。
BLDC電機(jī)成功的關(guān)鍵是電子開關(guān)模式電源和電機(jī)控制電路產(chǎn)生一個(gè)三相輸入,進(jìn)而產(chǎn)生旋轉(zhuǎn)磁場(chǎng),拉動(dòng)電機(jī)的轉(zhuǎn)子。由于磁場(chǎng)和轉(zhuǎn)子以相同的頻率旋轉(zhuǎn),電機(jī)被歸類為“同步”。霍爾效應(yīng)傳感器傳遞定子和轉(zhuǎn)子的相對(duì)位置,使控制器可以在適當(dāng)?shù)臅r(shí)刻切換磁場(chǎng)。 “無(wú)傳感器”技術(shù)可監(jiān)測(cè)反電動(dòng)勢(shì)(EMF)以確定定子和轉(zhuǎn)子位置。
順序向三相BLDC電機(jī)施加電流的常見配置包括三對(duì)功率MOSFET安排在橋梁結(jié)構(gòu)中。每對(duì)充當(dāng)逆變器,將來自電源的直流電壓轉(zhuǎn)換為驅(qū)動(dòng)電機(jī)繞組所需的交流電壓(圖1)。在高壓應(yīng)用中,通常使用絕緣柵雙極晶體管(IGBT)代替MOSFET。
圖1:數(shù)字三相BLDC電機(jī)控制通常使用三對(duì)MOSFET,每對(duì)MOSFET為電機(jī)的一個(gè)繞組提供交流電壓。 (圖像:德州儀器)
晶體管對(duì)包括一個(gè)低端器件(源極接地)和一個(gè)高端器件(源極在地和高壓電源軌之間浮動(dòng))。
在典型的布置中,使用脈沖寬度調(diào)制(PWM)來控制MOSFET柵極,其有效地將輸入DC電壓轉(zhuǎn)換為調(diào)制的驅(qū)動(dòng)電壓。應(yīng)該使用比預(yù)期的電動(dòng)機(jī)轉(zhuǎn)速高至少一個(gè)數(shù)量級(jí)的PWM頻率。每對(duì)MOSFET控制電機(jī)一相的磁場(chǎng)。有關(guān)驅(qū)動(dòng)BLDC的更多信息,請(qǐng)參閱庫(kù)文章“如何為無(wú)刷直流電機(jī)供電和控制。”
電動(dòng)機(jī)控制系統(tǒng)
完整的電機(jī)控制系統(tǒng)包括電源,主機(jī)微控制器,柵極驅(qū)動(dòng)器和半橋拓?fù)浣Y(jié)構(gòu)的MOSFET(圖2)。微控制器設(shè)置PWM占空比并負(fù)責(zé)開環(huán)控制。在低壓設(shè)計(jì)中,柵極驅(qū)動(dòng)器和MOSFET橋有時(shí)集成在一個(gè)單元中。然而,對(duì)于高功率單元,柵極驅(qū)動(dòng)器和MOSFET橋接器是分開的,以便于熱管理,使得不同的工藝技術(shù)可用于柵極驅(qū)動(dòng)器和橋接器,并限度地降低EMI。
圖2:基于TI MSP 430微控制器的BLDC電動(dòng)機(jī)控制原理圖。 (圖像:德州儀器)
MOSFET橋可以由分立器件或集成芯片組成。將低端和高端MOSFET集成在同一封裝中的關(guān)鍵優(yōu)勢(shì)在于,即使MOSFET具有不同的功耗,它也允許頂部和底部MOSFET之間的自然熱均衡。無(wú)論是集成還是離散,每個(gè)晶體管對(duì)都需要一個(gè)獨(dú)立的柵極驅(qū)動(dòng)器來控制開關(guān)時(shí)序和驅(qū)動(dòng)電流。
也可以使用分立元件設(shè)計(jì)柵極驅(qū)動(dòng)器電路。這種方法的優(yōu)勢(shì)在于它允許工程師調(diào)整柵極驅(qū)動(dòng)器以匹配MOSFET特性并優(yōu)化性能。缺點(diǎn)是需要高水平的電機(jī)設(shè)計(jì)經(jīng)驗(yàn)和適應(yīng)分立解決方案所需的空間。
模塊化電機(jī)控制解決方案提供了另一種選擇,市場(chǎng)上有各種各樣的集成柵極驅(qū)動(dòng)器。更好的模塊化門驅(qū)動(dòng)解決方案包括:
高集成度以限度地減少器件所需的空間
高驅(qū)動(dòng)電流可降低開關(guān)損耗并提高效率
高柵極驅(qū)動(dòng)電壓,確保MOSFET導(dǎo)通內(nèi)阻(“RDS(ON)”)
高電流過流,過壓和過溫保護(hù),可在惡劣的條件下實(shí)現(xiàn)可靠的系統(tǒng)運(yùn)行
德州儀器(TI)的DRV8323x系列三相柵極驅(qū)動(dòng)器可降低系統(tǒng)元件數(shù)量,降低成本和復(fù)雜性,同時(shí)滿足高效BLDC電機(jī)的需求。
DRV8323x系列有三種型號(hào)。每個(gè)都集成了三個(gè)獨(dú)立的柵極驅(qū)動(dòng)器,能夠驅(qū)動(dòng)高側(cè)和低側(cè)MOSFET對(duì)。柵極驅(qū)動(dòng)器包括一個(gè)電荷泵,用于為高端晶體管產(chǎn)生高柵極電壓(具有高達(dá)100%的占空比支持),以及一個(gè)用于為低端晶體管供電的線性穩(wěn)壓器。
TI柵極驅(qū)動(dòng)器包括讀出放大器,如果需要,還可以配置為放大低端MOSFET上的電壓。這些器件可提供高達(dá)1安培的電流,具有2安培吸收峰值柵極驅(qū)動(dòng)電流,并可通過單電源供電,輸入電源范圍為6至60伏。
DRV8323R版本,適用于例如,集成三個(gè)雙向電流檢測(cè)放大器,使用低側(cè)分流電阻監(jiān)控每個(gè)MOSFET橋的電流水平。可通過SPI或硬件接口調(diào)整電流檢測(cè)放大器的增益設(shè)置。微控制器連接到DRV8323R的EN_GATE,因此它可以啟用或禁用柵極驅(qū)動(dòng)輸出。
DRV8323R器件還集成了一個(gè)600毫安(mA)降壓穩(wěn)壓器,可用于為外部控制器供電。該穩(wěn)壓器可以使用柵極驅(qū)動(dòng)器電源或單獨(dú)的一個(gè)(圖3)。
圖3:高度集成的柵極驅(qū)動(dòng)器,如TI的DRV8323R在節(jié)省空間的同時(shí)減少系統(tǒng)組件數(shù)量,成本和復(fù)雜性。 (圖像:德州儀器)
柵極驅(qū)動(dòng)器具有多種保護(hù)功能,包括電源欠壓鎖定,電荷泵欠壓鎖定,過流監(jiān)控,柵極驅(qū)動(dòng)器短路檢測(cè)和過溫關(guān)斷。
每個(gè)DRV832x都封裝在尺寸僅為5 x 5到7 x 7毫米(mm)的芯片中(取決于選項(xiàng))。這些產(chǎn)品可以節(jié)省超過24個(gè)分立元件所需的空間。
使用集成柵極驅(qū)動(dòng)器進(jìn)行設(shè)計(jì)
為了使設(shè)計(jì)人員能夠正常運(yùn)行,TI提供了參考設(shè)計(jì)TIDA-01485。這是一款99%效率,1千瓦(kW)功率級(jí)參考設(shè)計(jì),適用于三相36伏BLDC電機(jī),適用于使用十節(jié)鋰離子電池供電的電動(dòng)工具等應(yīng)用。
參考設(shè)計(jì)展示了如何使用高度集成的柵極驅(qū)動(dòng)器(如DRV8323R),通過在此功率級(jí)別形成電機(jī)控制電路之一的基礎(chǔ),節(jié)省電機(jī)控制設(shè)計(jì)的空間。參考設(shè)計(jì)實(shí)現(xiàn)了基于傳感器的控制。 (參見圖書館文章“為什么以及如何正弦控制三相無(wú)刷直流電機(jī)”。)
參考設(shè)計(jì)的主要元件是MSP430F5132微控制器,DRV8323R柵極驅(qū)動(dòng)器和三個(gè)CSD88599 60伏特半橋MOSFET功率模塊(圖4)。
圖4:TIDA-01485是1 kW,99%效率的功率級(jí)參考設(shè)計(jì)用于三相36伏BLDC電機(jī),可由十節(jié)鋰離子電池供電。 (圖像:德州儀器)
雖然柵極驅(qū)動(dòng)器是高度集成的模塊化解決方案,消除了分立設(shè)計(jì)的許多復(fù)雜性,但仍需要一些設(shè)計(jì)工作來創(chuàng)建完全工作的系統(tǒng)。參考設(shè)計(jì)通過展示一個(gè)全面的解決方案幫助設(shè)計(jì)人員繪制原型。
例如,柵極驅(qū)動(dòng)器需要多個(gè)去耦電容才能正常工作。在參考設(shè)計(jì)中,1微法(μF)電容(C13)將低端MOSFET的驅(qū)動(dòng)電壓(DVDD)去耦,該電壓源自DRV8323R的內(nèi)部線性穩(wěn)壓器(圖5)。該電容必須盡可能靠近柵極驅(qū)動(dòng)器放置,以盡量減小環(huán)路阻抗。需要一個(gè)值為4.7μF(C10)的第二個(gè)去耦電容來將直流電源輸入(PVDD)與36伏電池去耦。
圖5:DRV8323R柵極驅(qū)動(dòng)器的應(yīng)用電路。應(yīng)盡量減少走線長(zhǎng)度以限制EMI。 (圖片:德州儀器)
二極管D6有助于在短路條件下電池電壓下降時(shí)隔離柵極驅(qū)動(dòng)器電源。該二極管非常重要,因?yàn)樗拇嬖谑筆VDD去耦電容(C10)能夠在小持續(xù)時(shí)間下降時(shí)保持輸入電壓。
保持電壓可防止柵極驅(qū)動(dòng)器進(jìn)入不希望的欠壓鎖定狀態(tài)。 C11和C12是使電荷泵工作的關(guān)鍵器件,也應(yīng)盡可能靠近柵極驅(qū)動(dòng)器。
通常,良好的設(shè)計(jì)做法是盡量減小高端和低端的環(huán)路長(zhǎng)度側(cè)柵極驅(qū)動(dòng)器,主要用于降低EMI。高端環(huán)路從DRV8323 GH_X到功率MOSFET,并通過SH_X返回。低側(cè)環(huán)路從DRV8323 GL_X到功率MOSFET,并通過GND返回。
切換時(shí)序的重要性
MOSFET的選擇是性能和效率的關(guān)鍵BLDC電機(jī)由于沒有兩個(gè)MOSFET系列完全相同,因此每種選擇都取決于所需的開關(guān)時(shí)間。即使是稍微錯(cuò)誤的定時(shí)也會(huì)導(dǎo)致問題,包括低效率,高EMI和可能的電機(jī)故障。
例如,不正確的定時(shí)會(huì)導(dǎo)致直通,導(dǎo)致低壓和高壓的情況側(cè)面MOSFET偶然導(dǎo)通,導(dǎo)致災(zāi)難性的短路。其他時(shí)序問題包括由可能損壞MOSFET的寄生電容觸發(fā)的瞬變。外部短路,焊接橋或MOSFET在特定狀態(tài)下掛起也會(huì)引發(fā)問題。
TI將其DRV8323標(biāo)記為“智能”柵極驅(qū)動(dòng)器,因?yàn)樗鼮樵O(shè)計(jì)人員提供了對(duì)時(shí)序和反饋的控制以消除這些問題。例如,驅(qū)動(dòng)器包括一個(gè)內(nèi)部狀態(tài)機(jī),用于防止柵極驅(qū)動(dòng)器中的短路事件,控制MOSFET橋死區(qū)時(shí)間(IDEAD),并防止外部功率MOSFET的寄生導(dǎo)通。
DRV8323柵極驅(qū)動(dòng)器還包括用于高側(cè)和低側(cè)驅(qū)動(dòng)器的可調(diào)節(jié)推挽式拓?fù)浣Y(jié)構(gòu),可實(shí)現(xiàn)外部MOSFET橋的強(qiáng)大上拉和下拉,以避免雜散電容問題??烧{(diào)柵極驅(qū)動(dòng)器支持動(dòng)態(tài)柵極驅(qū)動(dòng)電流(IDRIVE)和持續(xù)時(shí)間(tDRIVE)變化(不需要限流柵極驅(qū)動(dòng)電阻)來微調(diào)系統(tǒng)操作(圖6)。
圖6:用于三相BLDC電機(jī)的一個(gè)MOSFET橋中的高側(cè)(VGHx)和低側(cè)晶體管(VGLx)的電壓和電流輸入。 IDRIVE和tDRIVE對(duì)于正確的電機(jī)運(yùn)行和效率非常重要; IHOLD用于將柵極維持在所需狀態(tài),ISTRONG防止低端晶體管的柵極 - 源極電容引起導(dǎo)通。 (圖片:德州儀器)
首先應(yīng)根據(jù)外部MOSFET的特性選擇IDRIVE和tDRIVE,例如柵極 - 漏極電荷,以及所需的上升和下降時(shí)間。例如,如果IDRIVE太低,MOSFET的上升和下降時(shí)間將會(huì)更長(zhǎng),從而導(dǎo)致高開關(guān)損耗。上升和下降時(shí)間也決定(在一定程度上)每個(gè)MOSFET的續(xù)流二極管的恢復(fù)尖峰的能量和持續(xù)時(shí)間,這可能進(jìn)一步消耗效率。
當(dāng)改變柵極驅(qū)動(dòng)器的狀態(tài)時(shí), IDRIVE應(yīng)用于tDRIVE周期,該周期必須足夠長(zhǎng),以使柵極電容完全充電或放電。根據(jù)經(jīng)驗(yàn),選擇tDRIVE使其大約是MOSFET開關(guān)上升和下降時(shí)間的兩倍。請(qǐng)注意,tDRIVE不會(huì)增加PWM時(shí)間,如果在有效期間收到PWM命令,則會(huì)終止。
在tDRIVE周期后,使用固定保持電流(IHOLD)將門保持在期望的狀態(tài)(拉起或拉下)。在高端導(dǎo)通期間,低端MOSFET柵極受到強(qiáng)下拉,以防止晶體管的柵極 - 源極電容導(dǎo)致導(dǎo)通。
固定的tDRIVE持續(xù)時(shí)間確保在故障條件下,例如MOSFET柵極短路,峰值電流時(shí)間受到限制。這限制了傳輸?shù)哪芰坎⒎乐箵p壞柵極驅(qū)動(dòng)引腳和晶體管。
結(jié)論
模塊化電機(jī)驅(qū)動(dòng)器通過消除數(shù)十個(gè)分立元件節(jié)省空間并增強(qiáng)新一代的優(yōu)勢(shì)緊湊型,數(shù)字控制,高功率密度BLDC電機(jī)。這些“智能”柵極驅(qū)動(dòng)器還包括簡(jiǎn)化設(shè)置功率MOSFET開關(guān)時(shí)序的棘手開發(fā)過程的技術(shù),同時(shí)減輕寄生電容的影響并降低EMI。
仍然需要注意確保外設(shè)精心選擇功率MOSFET和去耦電容等電路。但是,如圖所示,主要的電機(jī)驅(qū)動(dòng)器供應(yīng)商提供參考設(shè)計(jì),開發(fā)人員可以根據(jù)這些設(shè)計(jì)原型。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 學(xué)子專區(qū) - ADALM2000實(shí)驗(yàn):包絡(luò)檢波器
- 想要BMS高效穩(wěn)定?電流感應(yīng)電阻解決方案了解下!
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時(shí)代國(guó)產(chǎn)IP機(jī)遇與挑戰(zhàn)齊飛
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十二)——功率半導(dǎo)體器件的PCB設(shè)計(jì)
- 智能物流推動(dòng)我們邁向更美好的未來
- 加速度傳感器的工作原理
- 遙感新技術(shù)助力電源測(cè)試和測(cè)量系統(tǒng),問題迎刃而解
技術(shù)文章更多>>
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
- AI不斷升級(jí),SSD如何扮演關(guān)鍵角色
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時(shí)代國(guó)產(chǎn)IP機(jī)遇與挑戰(zhàn)齊飛
- 想要BMS高效穩(wěn)定?電流感應(yīng)電阻解決方案了解下!
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
MediaTek
MEMS
MEMS傳感器
MEMS麥克風(fēng)
MEMS振蕩器
MHL
Micrel
Microchip
Micron
Mic連接器
Mi-Fi
MIPS
MLCC
MMC連接器
MOSFET
Mouser
Murata
NAND
NFC
NFC芯片
NOR
ntc熱敏電阻
OGS
OLED
OLED面板
OmniVision
Omron
OnSemi
PI
PLC