采用MAX606設(shè)計(jì)12V的小功率開關(guān)電源
發(fā)布時間:2018-03-19 來源:貿(mào)澤電子設(shè)計(jì)圈 責(zé)任編輯:lina
【導(dǎo)讀】在便攜式儀器中,只能使用電池為系統(tǒng)供電。通常電池電壓比較低,系統(tǒng)中經(jīng)常需要使用小功率開關(guān)電源電路對低電壓進(jìn)行電壓變換,滿足系統(tǒng)中不同功能模塊的需求。然而,使用開關(guān)電源必將引入紋波噪聲,如何降低該紋波噪聲成為系統(tǒng)設(shè)計(jì)的一個重要問題。開關(guān)電源的紋波抑制器通常使用C 型、LC型、CLC 型無源濾波器。π 型三階低通CLC 濾波器由于其結(jié)構(gòu)簡單,體積小,性能高等優(yōu)點(diǎn)得到了廣泛的應(yīng)用。
根據(jù)開關(guān)電源的公式,輸出紋波和輸出電容值成反比,電感內(nèi)電流波動大小和電感值成反比。理論上使用標(biāo)稱值大的電容、電感可以得到較好的紋波抑制效果。實(shí)際應(yīng)用中,CLC 電路中不同類型的電解電容及不同標(biāo)稱值的電容、電感對電源紋波的抑制效果究竟有什么樣的影響尚無相關(guān)文章指出。因此,有必要對CLC 濾波電路進(jìn)行實(shí)際測試研究。
本文采用MAX606 設(shè)計(jì)了12 V 的小功率開關(guān)電源,使用CLC 濾波器對電源輸出紋波進(jìn)行抑制。通過使用不同類型電解電容及不同標(biāo)稱值的電容、電感,研究了CLC 濾波器的特性,得到了降低小功率開關(guān)電源紋波的簡單方法。
1.電路設(shè)計(jì)
MAX606 是一款小型CMOS 升壓式DC/DC 轉(zhuǎn)換器,其輸入范圍3.0~5.5 V,輸出固定5 V/12 V 或可調(diào)輸出范圍Vin~12.5 V,精度為±4%。MAX606 的開關(guān)頻率高達(dá)1 MHz,在5 V輸出時可提供高達(dá)180 mA 的電流,廣泛應(yīng)用于PCMCIA 卡、存儲卡、數(shù)碼相機(jī)和手持式儀器中。
設(shè)計(jì)電路如圖1 所示,測試時輸入端使用3.6 V 的鋰電池進(jìn)行供電,使用π 型CLC 低通濾波電路對MAX606 輸出端進(jìn)行紋波濾波。
圖1 虛線框內(nèi)為CLC 濾波電路,通過更改Cin、Cout、L1 的相關(guān)參數(shù),研究其對輸出紋波的抑制特性。
2.π 型CLC 濾波特性分析
考慮到電源輸出阻抗,將圖1 虛線框中所示CLC 電路的等效電路用圖2 表示,為了便于分析加入了負(fù)載RL,RS 為電源輸出阻抗。
圖2 中Ui 為開關(guān)電源的輸出端,Uo 為輸出到負(fù)載兩端的電壓。
2.1 CLC 濾波電路理論分析
電源信號輸入C1 兩端之后,負(fù)載RL上的直流電壓為:
式(1)表明加入電感L 將使UL 變小,影響電源的負(fù)載調(diào)整率。若要使輸出電壓穩(wěn)定,應(yīng)選用等效串聯(lián)電阻小的電感器件,電感器的等效串聯(lián)電阻由其繞制導(dǎo)線的直流電阻決定。
對于開關(guān)電源輸出而言,其交流信號即為電源紋波信號根據(jù)CLC 濾波電路傳遞函數(shù):
從式(2)可以看出,隨頻率增大,紋波衰減越大;Cin、Cout 越大,紋波衰減越大,因此,π 型CLC 濾波器對電源紋波有一定的抑制作用。但是,式(2)是在L、C 均為理想情況下得出的,并未考慮實(shí)際電感電容的材料及它們的寄生參數(shù)。
2.2實(shí)際測試分析
測試數(shù)據(jù)由泰克示波器TDS2022B (200 MHz、2 GS/s)、交流數(shù)字毫伏表KH-DD 型(10 Hz~2 MHz)測量所得,負(fù)載使用ZX21 型直流多值電阻器。
2.2.1 無濾波電路時電源輸出紋波波形
圖3 所示為空載時MAX606 輸出電壓紋波波形(Uo≈12 V),即開關(guān)紋波,其頻率為1.18 kHz,波形穩(wěn)定,Vpp=240 mV。圖4 所示為負(fù)載120 Ω 時輸出電壓的紋波波形,從圖4 中可以看出加入負(fù)載后電源紋波變得比較復(fù)雜,其最高Vpp達(dá)到1.2 V。為系統(tǒng)供電時,該紋波將會對系統(tǒng)造成嚴(yán)重危害,必須對此紋波進(jìn)行抑制。
2.2.2 π 型CLC 濾波電路中不同類型電解電容下紋波隨負(fù)載的變化
在圖1 的CLC 濾波電路中,Cin、Cout 分別使用三種常見類型的電解電容(容值為220 μF/16 V),電感使用環(huán)形電感(電感值120 μH),依次改變負(fù)載大小,使用交流毫伏表測量其紋波電壓有效值,得到如圖5 所示的曲線圖。
從圖5 曲線可以看出,隨負(fù)載阻值逐漸增大,電源紋波有效值先急劇增大,后逐漸減小,在160 Ω 時三種類型電解電容輸出紋波均很低,滿足一般系統(tǒng)的電源紋波要求。從圖5 還可以看出整體水平上,普通直插式鋁電解電容紋波抑制能力最差,貼片鉭電解次之,貼片鋁電解濾波效果最佳。當(dāng)負(fù)載阻值小于500 Ω 時,貼片鋁電解濾波效果最佳。當(dāng)負(fù)載阻值大于500 Ω 時,鉭電解的濾波效果是最佳的。
圖6 所示為負(fù)載是300 Ω 時不同類型電解電容下所測量到的紋波波形,可以明顯看出使用貼片鋁電解紋波最小,使用普通鋁電解紋波較大且紋波具有毛刺,使用貼片鉭電解紋波有所減小且毛刺也有很大程度的改善。
圖7 所示為負(fù)載120 Ω 時不同類型電解電容下所測量得到的紋波波形。對比圖4 可以看出,經(jīng)過π 型CLC 濾波后,紋波已被抑制到很小范圍。從圖7 可以看出,此時鉭電解電容的紋波抑制能力最好,紋波波形中毛刺幅度也變小。
綜上所述,考慮到實(shí)際工作時,一般電路所需電流均為數(shù)十毫安,在整體水平上推薦濾波電路使用貼片鋁電解電容。當(dāng)負(fù)載很重(負(fù)載值?。r,則推薦使用鉭電解電容器。
2.2.3 不同電感值下紋波隨負(fù)載的變化
電容固定(貼片鉭電解220 μF/16 V),改變圖1 中CLC 濾波電路的電感值大小,測量不同負(fù)載時紋波的有效值,得到如圖8 所示的曲線圖,其中電感使用的是弓形電感。
從圖8 中可以看出,隨電感值增大,電源紋波減小,對于mH 級電感消除紋波效果非常明顯。采用1 mH 電感時,紋波電壓有效值僅3 mV,采用4.7 mH 時,紋波電壓有效值可降低至1.8 mV。
圖9 所示為負(fù)載為300 Ω 時不同電感值下紋波波形圖,從圖9 中可以看出,隨電感值增大,紋波被抑制程度越大,輸出紋波越小。當(dāng)電感值增大到1 mH 時,紋波效果最好,且輸出基本上沒有毛刺。
2.2.4 不同電容值下負(fù)載對紋波的影響
圖10 所示為在不同電容值(貼片鉭電解)下,改變電感和負(fù)載并測量負(fù)載上的電源紋波有效值所得出的曲線圖。
從圖10 中可以看出,隨電感、負(fù)載的變化紋波抑制趨勢大體相同,可以看出電容的增大對紋波的抑制較小,且紋波有效值并不隨電容值的增大而得到抑制,電感值的增大對電源紋波的抑制起決定性的作用。但是,選擇電容值時宜選取100 μF 以上的電容,才可以得到較好的紋波抑制效果。
總結(jié)
π 型CLC 濾波電路在小功率開關(guān)電源中能夠起到較好的紋波抑制效果,通過改變電解電容的類型,調(diào)整電容值和電感值的大小,能夠顯著提高抑制紋波性能。對CLC 濾波電路進(jìn)行的特性分析能夠?yàn)樵O(shè)計(jì)高質(zhì)量小功率開關(guān)電源提供參考。
特別推薦
- 學(xué)子專區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來提高工業(yè)功能安全合規(guī)性?
- 如何通過配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動化多通道測試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- 基于 SiC 的三相電機(jī)驅(qū)動開發(fā)和驗(yàn)證套件
- 自主移動機(jī)器人設(shè)計(jì)指南,看完秒懂
- AI不斷升級,SSD如何扮演關(guān)鍵角色
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 大電流、高性能降壓-升壓穩(wěn)壓器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
MediaTek
MEMS
MEMS傳感器
MEMS麥克風(fēng)
MEMS振蕩器
MHL
Micrel
Microchip
Micron
Mic連接器
Mi-Fi
MIPS
MLCC
MMC連接器
MOSFET
Mouser
Murata
NAND
NFC
NFC芯片
NOR
ntc熱敏電阻
OGS
OLED
OLED面板
OmniVision
Omron
OnSemi
PI
PLC