采用兩級(jí)電源架構(gòu)方案提升48V配電系統(tǒng)功率密度和數(shù)據(jù)中心能效
發(fā)布時(shí)間:2020-06-03 來源:Qian Ouyang, Rohan Samsi 和 Jinghai Zhou 責(zé)任編輯:wenwei
【導(dǎo)讀】當(dāng)前的數(shù)據(jù)中心,通常仍需要一個(gè) 12V 背板以及板上配電功能,并采用單相或多相同步 Buck 降壓調(diào)節(jié)器,方可將電壓降到 1V 左右。正常情況下,這些數(shù)據(jù)中心機(jī)架的額定功率最大為 20kW。而業(yè)內(nèi)的需求是希望將每個(gè)機(jī)架的功率密度能提高到100kW,從而減少整體尺寸。
其實(shí),完全可以通過使用 48V 背板和配電來實(shí)現(xiàn)這一需求,然而這種方法卻存在諸多挑戰(zhàn),因?yàn)樗鼰o法依靠傳統(tǒng)同步 Buck 降壓調(diào)節(jié)器將48V 電壓驅(qū)動(dòng)至電路板。那么,還有什么其他辦法可以在不增加成本的前提下提高數(shù)據(jù)中心的功率密度呢?本文概述了一種兩級(jí)架構(gòu)解決方案——以一種靈活的、可調(diào)節(jié)的、高性價(jià)比方式,將 48V 電壓驅(qū)動(dòng)至負(fù)載點(diǎn)(POL,大約 1-5V),這對(duì)于下一代服務(wù)器功率傳輸將大有裨益。
方案
隨著用戶對(duì)數(shù)據(jù)中心的需求越來越大,提高數(shù)據(jù)中心尺寸和密度也變得迫在眉睫。其中關(guān)鍵制約因素是服務(wù)器每個(gè)機(jī)架的功率限制大約只有20kW,這種限制由次優(yōu)的配電網(wǎng)絡(luò)導(dǎo)致而成。由于大部分芯層和背板工作在 12V,需要大量覆銅來限制每個(gè)機(jī)架的功率。對(duì)此,開放計(jì)算項(xiàng)目(OCP)和谷歌已經(jīng)提出了將工作電壓提高到 48V的解決方案,能將每個(gè)機(jī)架的安裝容量提高到每架 50-100kW。然而這種架構(gòu)尚未成功的至關(guān)因素是缺乏下游解決方案。(也就是說:需將 48V 電壓驅(qū)動(dòng)至電路板上安裝的負(fù)載點(diǎn)(POL),包括處理器,內(nèi)存條,和其他 ASICs 專用集成電路)。
同時(shí)也有人提出了幾種不同的方法來解決 48V 輸入到負(fù)載點(diǎn)(POL)的配電問題——需要克服的主要挑戰(zhàn)包括可調(diào)性、成本、效率和尺寸問題。
可調(diào)性和成本
首先,很難將 48V 電壓分配到各個(gè)負(fù)載點(diǎn),包括用于電源的小電流,例如 USB 和 VGA 端口,這些端口在 2-5V 時(shí)通常每個(gè)會(huì)消耗幾百毫安的電流;再包括處理器,這些處理器在接近 1V 時(shí)會(huì)消耗幾百安培的電流。也有一些可行的解決方案,如通過精確地調(diào)節(jié)中間母線和使用 DC/DC 變壓器進(jìn)行最終降壓,將電壓直接從 48V 驅(qū)動(dòng)到負(fù)載電壓(1-5V)。
這些解決方案對(duì)于大電流電源應(yīng)用是很有效,但是它們都難以縮小規(guī)模,對(duì)大多數(shù)小電流電源來說非常昂貴,甚至對(duì)于大電流電源來說成本效益也不夠高。因此,有人提出了另一種解決方案:使用氮化鎵 (GaN) 來解決此難題,采用一種簡(jiǎn)單的同步降壓解決方案來完成直接的電壓轉(zhuǎn)換。當(dāng)然,如果成本和大批量生產(chǎn)變得可行時(shí),它們的確具有廣大的市場(chǎng)前景,但就目前看來依舊遙遙無期。
效率和尺寸
為了適應(yīng)當(dāng)前服務(wù)器板的要求,電路板解決方案必須同時(shí)滿足高效率和小尺寸。48V 至 1V 的轉(zhuǎn)換效率至少在 93% 及以上,因?yàn)閷?duì)于 12V-1V 的電壓轉(zhuǎn)換,目前最先進(jìn)的轉(zhuǎn)換效率為95%。再加上工業(yè)標(biāo)準(zhǔn)機(jī)架和插入背板的配電板尺寸限制,48V-1V 轉(zhuǎn)換器尺寸不得大于 12V-1V 轉(zhuǎn)換器尺寸。
解決方案
本文提出的 48V 至低壓配電解決方案為一種兩級(jí)轉(zhuǎn)換方案,相比于既有的數(shù)據(jù)中心解決方案,具有更高效率、更低成本和可調(diào)性優(yōu)勢(shì)。
第一級(jí)
首先將VIN 電源 (48V)分布至整個(gè)板上,然后降壓至可變的中間電壓值,通常為 5-8V。在 CPU 和存儲(chǔ)電源群集中生成 5-8V 可變電壓,由獨(dú)立轉(zhuǎn)換器生成其他配電功率(總計(jì)約 50W)。中間浮動(dòng)電源可確保完全的軟開關(guān),使用半橋、諧振、LLC 變換器能實(shí)現(xiàn) 98% 的峰值效率。由于輸入電壓低于 60V,所以無需隔離。采用變壓器代替電感作為 LLC 網(wǎng)絡(luò)的一部分,更易實(shí)現(xiàn)功能性隔離,同時(shí)有助于電壓從 48V 降至 5-8V。這一解決方案的基本理念是模塊化第一級(jí)解決方案(見圖1)。
圖1:第一級(jí)模塊前視圖
第一級(jí)模塊可以根據(jù)功率輸出的功能進(jìn)行調(diào)節(jié),但是對(duì)于典型單處理器服務(wù)器,僅需2種模塊即可。第一級(jí)的另一個(gè)獨(dú)特之處為多源極。當(dāng)市場(chǎng)上諸如 GaN 之類的技術(shù)開始普及時(shí),可以在不影響下游解決方案的情況下無縫更換這些模塊。非穩(wěn)壓可變 5-8V 電壓也可由 5-8V 穩(wěn)壓代替,不會(huì)對(duì)整個(gè)系統(tǒng)造成任何干擾,從而可以保持互操作性。
第二級(jí)
第二級(jí)完全取決于所分配的電源。在1毫安負(fù)載情況下,第二級(jí)就像使用線性低壓差(LDO)調(diào)節(jié)器一樣簡(jiǎn)單。隨著功率級(jí)的提高,第二級(jí)可以充分利用單相同步降壓調(diào)節(jié)器。隨著輸入電壓的下降,低占空比率的要求也隨之減少,并且還可以優(yōu)化場(chǎng)效應(yīng)管(FET)和效率,減少損耗。與典型的 12V 電源相比,此種通過減少高擊穿電壓 FET 需求的解決方案,不僅可以降低元器件的成本,還可以從效率上改善它們的品質(zhì)因數(shù)。而針對(duì)處理器和存儲(chǔ)器中更高的電流解決方案,可采用多相交錯(cuò)并聯(lián)調(diào)節(jié)器(見圖2)。
隨著輸入電壓的降低,這些多相變換器的峰值效率可高達(dá)約97%。得益于大部分變換器中前饋控制的改善,浮動(dòng)輸入電壓(5-8V,第一級(jí)輸出)也變得更易處理。由于使用了更小尺寸的電感和更少的電容,高頻變換器的尺寸也變得更小。
圖2:第二級(jí)
總結(jié)/結(jié)論
該解決方案的總效率約為 95%,超過了 48V-1V 轉(zhuǎn)換 93% 的目標(biāo)效率,可匹敵最先進(jìn)的12V-1V轉(zhuǎn)換效率。因?yàn)槟K可以豎直貼裝,所以不會(huì)增加電路板的尺寸。第二級(jí)尺寸減小的后續(xù)增益對(duì)應(yīng)了第一級(jí)尺寸的增加。第二級(jí)變換器的靈活使用和第一級(jí)變換器的響應(yīng)調(diào)整功能,增加了解決方案的可調(diào)性。采用此種解決方案,在保證數(shù)據(jù)中心成本和尺寸不變的同時(shí),可實(shí)現(xiàn)每機(jī)架100kW的功率密度。
推薦閱讀:
特別推薦
- 學(xué)子專區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來提高工業(yè)功能安全合規(guī)性?
- 如何通過配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動(dòng)化多通道測(cè)試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- 基于 SiC 的三相電機(jī)驅(qū)動(dòng)開發(fā)和驗(yàn)證套件
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
- AI不斷升級(jí),SSD如何扮演關(guān)鍵角色
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 大電流、高性能降壓-升壓穩(wěn)壓器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
MediaTek
MEMS
MEMS傳感器
MEMS麥克風(fēng)
MEMS振蕩器
MHL
Micrel
Microchip
Micron
Mic連接器
Mi-Fi
MIPS
MLCC
MMC連接器
MOSFET
Mouser
Murata
NAND
NFC
NFC芯片
NOR
ntc熱敏電阻
OGS
OLED
OLED面板
OmniVision
Omron
OnSemi
PI
PLC