【推薦閱讀】
基于單片機(jī)控制的射頻通信基站的設(shè)計(jì)與實(shí)現(xiàn)
發(fā)布時(shí)間:2016-07-08 責(zé)任編輯:wenwei
【導(dǎo)讀】目前有線通信技術(shù)始終是市場(chǎng)的主流,但是空間區(qū)域不能自由布線是最大瓶頸。而無線通信技術(shù)能很好的解決這一問題,能更好的解決基礎(chǔ)硬件搭建調(diào)試及減小后期維護(hù)的難度。本文采用同類產(chǎn)品中性價(jià)比較高的芯片NRF24L01,配合簡(jiǎn)單外圍電路和降低芯片,實(shí)現(xiàn)對(duì)其控制,很好地解決了這一問題。
本文的控制部件選用AT89C51型單片機(jī)。由于這種芯片只有SPI通信接口,而目前常用的單片機(jī)都沒有這種接口,因此需要對(duì)該芯片的通信時(shí)序進(jìn)行模擬,所以在控制器里編程時(shí)要嚴(yán)格按照芯片工作時(shí)序進(jìn)行。
1 系統(tǒng)硬件組成
NRF24L01芯片是具有2.4GHz內(nèi)嵌基帶通信協(xié)議引擎功能的收發(fā)芯片。通過SPI接口對(duì)芯片內(nèi)部寄存器映射操作,可以使其在空中的傳輸速度最大達(dá)到2Mb/s。
該芯片主要特點(diǎn)包括GFSK調(diào)制技術(shù):126RF頻道滿足多點(diǎn)通信需要1~2Mb/s空中數(shù)據(jù)傳輸速率內(nèi)置硬件CRC檢錯(cuò)和點(diǎn)對(duì)點(diǎn)通信地址控制:發(fā)送方電源可以通過編程輸出0dBm,-6dBm,-12dBm,-18dBm:芯片可以通過軟件設(shè)置地址,確保通過地址認(rèn)證雙方才能通信:接收方采用集成通道過濾器,可編程的增益設(shè)置:主機(jī)接口采用4根SPI硬件接口線,最大8Mb/s傳輸速率,3個(gè)32字節(jié)的TX與RX的FIFO寄存器,5V容抗輸入。
該芯片引腳功能如圖1所示,引腳1為CE數(shù)字信號(hào)輸入,引腳2為CSN數(shù)字信號(hào)輸入,引腳3為SCK數(shù)字信號(hào)輸入,引腳4為MOSI數(shù)字信號(hào)輸入,引腳5為MISO數(shù)字信號(hào)輸出,引腳6為IRQ數(shù)字信號(hào)輸,引腳7,15,18為VDD電源,引腳8,14,17為VSS電源,引腳9為XC2模擬輸出,引腳10為XC1模擬輸入,引腳11為VDD_PA電源輸出,引腳12為ANT1射頻,引腳13為ANT2射頻,引腳16為IREF模擬輸入,引腳19為DVDD電源,引腳20為VSS電源。
在硬件搭建時(shí)特別要注意在SPI接口與51單片機(jī)的P0引腳相接時(shí)需要接10kΩ的上拉電阻,其余的接口不需要。VCC引腳接入電壓范圍為1.9~3.6V,不能在這個(gè)區(qū)間之外,超過3.6V將會(huì)燒毀模塊,推薦電壓3.3V。因?yàn)檫@樣可以直接和NRF24L01模塊的I/O口線連接。如果是其他系列的單片機(jī),其電源是5V,單片機(jī)I/O口輸出電流如果超過10mA時(shí)需要串聯(lián)電阻分壓,否則容易燒毀模塊。例如AVR系列單片機(jī)電源是5V,需串接2kΩ的電阻。
圖1NRF2401芯片引腳功能圖
1.2 NRF24L01芯片構(gòu)成的通信模塊電路設(shè)計(jì)
NRF24L01芯片通信模塊電路核心器件NRF24L01配合網(wǎng)絡(luò)晶振、解耦電容、偏極電阻一起工作構(gòu)造穩(wěn)定射頻通信模塊。該芯片是貼片結(jié)構(gòu),模塊占用空間少,如圖2所示。
圖2由NRF24L01芯片構(gòu)成的通信模塊電路圖
1.3 電源電路
電源電路如圖3所示,B1是9V蓄電池或者鋰電池,能夠反復(fù)充電。C1,C2,C3,C4都是濾波電容,起到一次與二次濾波作用。D1,D2是穩(wěn)壓二極管,使輸出端的電壓穩(wěn)定在理想的水平電壓。芯片7805是三端穩(wěn)壓集成電路芯片,具有正電壓輸出。其電路內(nèi)部還有過流、過熱及調(diào)整管等保護(hù)電路,最終目的把9V電源轉(zhuǎn)變成穩(wěn)定5V輸出,為后續(xù)設(shè)備供電。
1.4 系統(tǒng)通信電路設(shè)計(jì)
系統(tǒng)通信電路如圖4所示。本電路中應(yīng)用單片機(jī)AT89C51作為控制芯片,對(duì)NRF24L01主通信模塊的接口時(shí)序模擬和對(duì)數(shù)據(jù)的發(fā)送與接收進(jìn)行處理。
圖3電源電路圖
圖4系統(tǒng)通信電路圖
1.5 與PC機(jī)通訊電路設(shè)計(jì)
如果單片機(jī)通信電路與單片機(jī)通信電路通信,則兩個(gè)硬件電路和圖4相同,只是在軟件設(shè)計(jì)時(shí)需在每個(gè)通信端設(shè)定不同的通信地址,以辨認(rèn)每個(gè)通信端口。若是單片機(jī)通信電路與PC機(jī)或者具有COM口的設(shè)備電路通信,則需要一個(gè)轉(zhuǎn)接電路,其硬件電路如圖5所示。
圖5SPI接口與MAX232通信硬件電路圖
在圖5所示的電路中,單片機(jī)左側(cè)是一塊MAX232芯片,其作用是將PC機(jī)中的232電平與單片機(jī)的TTL電平匹配。最左側(cè)是9芯母接頭,在使用時(shí)可接在計(jì)算機(jī)COM口上與計(jì)算機(jī)通信。單片機(jī)右側(cè)接一塊射頻通信模塊。由于此塊單片機(jī)同樣沒有SPI接口,所以需要用普通接口軟件模擬SPI接口,其編程要嚴(yán)格按SPI端口的通信邏輯時(shí)序。
2 單片機(jī)控制實(shí)現(xiàn)算法
通信芯片可以工作在四種模式下,即:配置模式、空閑模式、關(guān)機(jī)模式和收發(fā)模式。工作模式由PWR_UPregister、PRIM_RXregister和CE三個(gè)寄存器共同決定。在工作模式的收發(fā)模式中推薦使用EnhancedShockBurst收發(fā)模式,因?yàn)樵谶@種工作模式下,系統(tǒng)的程序編制會(huì)更加簡(jiǎn)單,并且穩(wěn)定性也會(huì)更高。兩種算法流程圖如圖6所示。
圖6發(fā)射流程與接收流程
3 結(jié)語
(1)提出基于射頻的無線通信技術(shù)方案,并且按照該方案搭建硬件電路。
(2)設(shè)計(jì)單片機(jī)控制算法,在PC機(jī)中編好上位機(jī)軟件,執(zhí)行機(jī)構(gòu)能迅速執(zhí)行預(yù)定結(jié)果,反應(yīng)時(shí)間小于1ms。
(3)在執(zhí)行機(jī)構(gòu)遇到障礙時(shí),能返回準(zhǔn)確命令,使上位機(jī)捕捉到相應(yīng)信息,直接反映雙向通信效果好。
(4)系統(tǒng)穩(wěn)定可靠,數(shù)據(jù)傳輸丟失率很小,低于0.01%。
(5)芯片互換性好,可根據(jù)不同傳輸距離選擇不同芯片,軟件不需改動(dòng)。
【推薦閱讀】
特別推薦
- 學(xué)子專區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來提高工業(yè)功能安全合規(guī)性?
- 如何通過配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動(dòng)化多通道測(cè)試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- 探索新能源汽車“芯”動(dòng)力:盡在2025廣州國際新能源汽車功率半導(dǎo)體技術(shù)展
- 不容錯(cuò)過的汽車電子盛會(huì)︱AUTO TECH China 2025第十二屆廣州國際汽車電子技術(shù)博覽會(huì)
- 基于 SiC 的三相電機(jī)驅(qū)動(dòng)開發(fā)和驗(yàn)證套件
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
- AI不斷升級(jí),SSD如何扮演關(guān)鍵角色
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
MediaTek
MEMS
MEMS傳感器
MEMS麥克風(fēng)
MEMS振蕩器
MHL
Micrel
Microchip
Micron
Mic連接器
Mi-Fi
MIPS
MLCC
MMC連接器
MOSFET
Mouser
Murata
NAND
NFC
NFC芯片
NOR
ntc熱敏電阻
OGS
OLED
OLED面板
OmniVision
Omron
OnSemi
PI
PLC