- 鏡像雜散—目標(biāo)頻段之外的RF,其與LO混頻產(chǎn)生IF的干擾。
- IF雜散—IF頻率的信號,其通過混頻器之前的濾波潛入,顯示為IF干擾。
- LO輻射—來自LO的RF泄漏到接收機(jī)鏈的輸入連接器。LO輻射是可以檢測到的,即使在僅接收的工作模式下也能檢測(參見圖3)。
X和Ku波段小尺寸無線電設(shè)計(jì)
發(fā)布時間:2017-12-14 來源:Brad Hall 和 Wyatt Taylor 責(zé)任編輯:wenwei
【導(dǎo)讀】Ku和Ka衛(wèi)星通信、雷達(dá)和信號情報(bào)(SIGINT)領(lǐng)域的許多航空航天和防務(wù)電子系統(tǒng)早就要求使用一部分或全部X和Ku頻段。隨著這些應(yīng)用轉(zhuǎn)向更加便攜的平臺,如無人機(jī)(UAV)和手持式無線電等,開發(fā)在X和Ku波段工作,同時仍然保持極高性能水平的新型小尺寸、低功耗無線電設(shè)計(jì)變得至關(guān)重要。
本文介紹一種新型高中頻架構(gòu),其顯著削減了接收機(jī)和發(fā)射機(jī)的尺寸、重量、功耗與成本,而系統(tǒng)規(guī)格不受影響。由此產(chǎn)生的平臺與現(xiàn)有無線電設(shè)計(jì)相比,模塊化程度、靈活性和軟件定義程度也更高。
簡介
近年來,推動RF系統(tǒng)實(shí)現(xiàn)更寬帶寬、更高性能、更低功耗,同時提高頻率范圍并縮小尺寸的力量越來越強(qiáng)大。這一趨勢已成為技術(shù)進(jìn)步的驅(qū)動力,RF器件的集成度遠(yuǎn)超以往所見。有許多因素在推動這一趨勢。
衛(wèi)星通信系統(tǒng)為了發(fā)送和接收每天收集到的數(shù)TB數(shù)據(jù),對數(shù)據(jù)速率的要求已達(dá)到4 Gbps。這一要求推動系統(tǒng)的工作頻率提高到Ku和Ka波段,原因是在這些頻率上更容易實(shí)現(xiàn)更寬的帶寬和更高的數(shù)據(jù)速率。這勢必導(dǎo)致通道密度更高,每通道的帶寬更寬。
在信號情報(bào)領(lǐng)域,性能要求也在不斷提高。此類系統(tǒng)的掃描速率越來越高,故而要求系統(tǒng)具有快速調(diào)諧PLL和寬帶寬覆蓋范圍。對尺寸更小、重量更輕、功耗更低(SWaP)和集成度更高系統(tǒng)的需求,源于業(yè)界希望在現(xiàn)場操作手持式設(shè)備,以及希望提高大型固定位置系統(tǒng)的通道密度。
相控陣的發(fā)展同樣得益于單芯片RF系統(tǒng)集成度的提高。集成讓收發(fā)器越來越小,使得每個天線元件都可以有自己的收發(fā)器,進(jìn)而促使模擬波束賦形向數(shù)字波束賦形轉(zhuǎn)變。通過數(shù)字波束賦形,單一陣列可以同時追蹤多個波束。相控陣系統(tǒng)應(yīng)用廣泛,包括天氣雷達(dá)和定向通信等。由于低頻信號環(huán)境變得越來越擁堵,許多應(yīng)用不可避免地要求提高頻率。
本文介紹如何利用一種高度集成的架構(gòu)來應(yīng)對上述挑戰(zhàn),該架構(gòu)將AD9371收發(fā)器用作中頻接收機(jī)和發(fā)射機(jī),使得整個中頻級及其相關(guān)器件都可以從系統(tǒng)中移除。文中比較了傳統(tǒng)系統(tǒng)與提議的架構(gòu),并舉例說明了如何通過典型設(shè)計(jì)流程來實(shí)現(xiàn)此架構(gòu)。具體說來,使用集成收發(fā)器可以實(shí)現(xiàn)一些高級頻率規(guī)劃,這是標(biāo)準(zhǔn)超外差樣式收發(fā)器做不到的。
超外差架構(gòu)概述
超外差架構(gòu)由于能實(shí)現(xiàn)很高的性能而成為多年來的首選架構(gòu)。超外差接收機(jī)架構(gòu)通常包括一個或兩個混頻級,混頻級饋入模數(shù)轉(zhuǎn)換器(ADC)。典型超外差收發(fā)器架構(gòu)如圖1所示。
圖1. 傳統(tǒng)X和Ku波段超外差接收和發(fā)射信號鏈
第一轉(zhuǎn)換級將輸入RF頻率上變頻或下變頻至帶外頻譜。第一IF(中頻)的頻率取決于頻率和雜散規(guī)劃、混頻器性能以及RF前端使用的濾波器。然后,第一IF向下轉(zhuǎn)換為ADC可以數(shù)字化的較低頻率。雖然ADC在處理更高帶寬的能力上取得了巨大進(jìn)步,但為達(dá)到最優(yōu)性能,其頻率上限目前是2 GHz左右。輸入頻率更高時,必須考慮性能損失,而且更高輸入頻率要求更高時鐘速率,這會導(dǎo)致功耗上升。
除混頻器外,還有濾波器、放大器和步進(jìn)衰減器。濾波用于抑制不需要的帶外(OOB)信號。若不加抑制,這些信號會在目標(biāo)信號上產(chǎn)生雜散,使目標(biāo)信號很難或無法進(jìn)行解調(diào)。放大器設(shè)置系統(tǒng)的噪聲系數(shù)和增益,提供足夠高的靈敏度以接收小信號,同時又不是太高以至于ADC過度飽和。
還有一點(diǎn)需要注意,此架構(gòu)常常需要使用表面聲波(SAW)濾波器以滿足ADC嚴(yán)格的抗混疊濾波器要求。SAW濾波器會提供急劇滾降性能以滿足這些要求,但同時也會帶來明顯的延遲和紋波。
圖2所示為一個X波段超外差接收機(jī)頻率規(guī)劃示例。該接收機(jī)希望接收8 GHz和12 GHz之間的信號,帶寬為200 MHz。目標(biāo)頻譜與可調(diào)諧本振(LO)混頻,產(chǎn)生5.4 GHz IF。然后,5.4 GHz IF與5 GHz LO混頻以產(chǎn)生最終的400 MHz IF。最終IF范圍是300 MHz至500 MHz,這是很多ADC能夠發(fā)揮良好性能的頻率范圍。
圖2. X波段接收機(jī)頻率規(guī)劃示例
接收機(jī)的重要特性
除了熟知的增益、噪聲系數(shù)和三階交調(diào)截點(diǎn)特性以外,影響接收機(jī)架構(gòu)頻率規(guī)劃的其他典型特性包括鏡像抑制、IF抑制、自發(fā)雜散和LO輻射。
圖3. LO輻射泄漏通過前端返回
自發(fā)雜散—接收機(jī)內(nèi)部的時鐘或本振混頻導(dǎo)致的IF雜散。
鏡像抑制特性同時適用于第一和第二混頻級。在X和Ku波段的典型應(yīng)用中,第一混頻級的中心頻率可以是5 GHz到10 GHz范圍的高IF。這里需要高IF,原因是鏡像頻率為Ftune + 2 × IF,如圖4所示。IF越高,鏡像頻段離得越遠(yuǎn)。此鏡像頻段必須在其到達(dá)第一混頻器之前加以抑制,否則此范圍內(nèi)的帶外能量會表現(xiàn)為第一IF中的雜散。這是通常使用兩個混頻級的主要原因之一。如果只有一個混頻器,并且IF為數(shù)百M(fèi)Hz,那么將很難在接收機(jī)前端中抑制鏡像頻率。
圖4. 混頻進(jìn)入IF的鏡像
將第一IF下變頻至第二IF時,第二混頻器也存在一個鏡像頻段。第二IF的頻率較低(幾百M(fèi)Hz到2 GHz),故第一IF濾波器的濾波要求可能視情況而不同。對于第二IF為幾百M(fèi)Hz的典型應(yīng)用,高頻第一IF的濾波可能非常困難,需要很大的定制濾波器。這常常是系統(tǒng)中最難設(shè)計(jì)的濾波器,因?yàn)轭l率很高且抑制要求通常很窄。
除鏡像抑制外,還必須有力地濾除從混頻器返回接收輸入連接器的LO功率水平。這樣可確保無法因?yàn)檩椛涔β识鴻z測到用戶。為此,LO應(yīng)遠(yuǎn)離RF通帶,確??梢詫?shí)現(xiàn)充分濾波。
高中頻架構(gòu)概述
最新集成收發(fā)器產(chǎn)品包括AD9371,它是一款300 MHz至6 GHz直接變頻收發(fā)器,具有兩個接收通道和兩個發(fā)射通道。接收和發(fā)射帶寬可在8 MHz至100 MHz范圍內(nèi)調(diào)整,工作模式可配置為頻分雙工(FDD)或時分雙工(TDD)。該器件采用12 mm2 封裝,TDD模式下功耗約為3 W,F(xiàn)DD模式下功耗約為5 W。由于正交糾錯(QEC)校準(zhǔn)的優(yōu)勢,它實(shí)現(xiàn)了75 dB到80 dB的鏡像抑制性能。
圖5. AD9371直接變頻收發(fā)器功能框圖
集成收發(fā)器IC的性能進(jìn)步開啟了新的可能性。AD9371集成了第二混頻器、第二IF濾波和放大、可變衰減ADC以及信號鏈的數(shù)字濾波和抽取功能。在該架構(gòu)中,AD9371(其調(diào)諧范圍為300 MHz至6 GHz)可調(diào)諧到3 GHz和6 GHz之間的頻率,直接接收第一IF(參見圖6)。其增益為16 dB,NF為19 dB,5.5 GHz時的OIP3為40 dBm,故AD9371是非常理想的IF接收機(jī)。
圖6. X或Ku波段TRx,AD9371用作中頻接收機(jī)
集成收發(fā)器用作IF接收機(jī),便不再需要像超外差接收機(jī)那樣擔(dān)心通過第二混頻器的鏡像,這可以大大降低第一IF帶的濾波需求。不過,為了消除收發(fā)器中的二階效應(yīng),仍然需要一定的濾波。第一IF帶現(xiàn)在應(yīng)以兩倍的第一IF頻率提供濾波以消除此類效應(yīng),這比濾除第二鏡像和第二LO要容易得多,它可能接近數(shù)百M(fèi)Hz。通常,利用低成本的小型LTCC濾波器成品即可滿足此類濾波要求。
這種設(shè)計(jì)還使系統(tǒng)具有很高的靈活性,可針對不同應(yīng)用而輕松加以重復(fù)使用。靈活性的表現(xiàn)之一是IF頻率選擇。IF選擇的一般經(jīng)驗(yàn)法則是讓它比經(jīng)過前端濾波的目標(biāo)頻譜帶寬高1 GHz至2 GHz。例如,若設(shè)計(jì)師需要4 GHz頻譜帶寬(17 GHz至21 GHz)經(jīng)過前端濾波器,則IF可以位于5 GHz頻率(比目標(biāo)帶寬4 GHz高1GHz)。這有助于前端實(shí)現(xiàn)濾波。如果只需要2 GHz帶寬,可以使用3 GHz的IF。此外,AD9371具有軟件定義特性,很容易隨時改變IF,所以特別適合需要避開阻塞信號的認(rèn)知無線電應(yīng)用。AD9371的帶寬也可以在8 MHz至100 MHz范圍內(nèi)輕松調(diào)整,有利于避免目標(biāo)信號附近的干擾。
高中頻架構(gòu)的高集成度使得最終的接收機(jī)信號鏈所占空間只有等效超外差架構(gòu)的50%左右,同時功耗降低30%。另外,高中頻架構(gòu)接收機(jī)比超外差架構(gòu)更為靈活。這種架構(gòu)是要求小尺寸、高性能的低SWaP市場的福音。
高中頻架構(gòu)接收機(jī)頻率規(guī)劃
高中頻架構(gòu)的優(yōu)點(diǎn)之一是能夠調(diào)諧IF。當(dāng)試圖創(chuàng)建一個能避開干擾雜散的頻率規(guī)劃時,這種能力特別有用。當(dāng)接收到的信號在混頻器中與LO混頻并產(chǎn)生一個非IF頻段內(nèi)目標(biāo)信號音的m × n雜散時,就會引起干擾雜散。
混頻器依據(jù)公式m × RF ± n × LO產(chǎn)生輸出信號和雜散,其中m和n為整數(shù)。接收信號產(chǎn)生的m × n雜散可能落在IF頻段中;某些情況下,目標(biāo)信號音會引起一個特定頻率的交越雜散。
例如,若觀測一個設(shè)計(jì)為接收12 GHz至16 GHz信號且IF為5.1 GHz的系統(tǒng),如圖7所示,則引起帶內(nèi)雜散的m × n鏡像頻率可依據(jù)下式確定:
圖7. 12 GHz至16 GHz Rx Tx高中頻架構(gòu)
在此式中,RF為混頻器輸入端的RF頻率,其導(dǎo)致一個信號音落在IF中。試舉一例,假設(shè)接收機(jī)調(diào)諧到13 GHz,這意味著LO頻率為18.1 GHz (5.1 GHz + 13 GHz)。將這些值代入上式,并允許m和n在0到3的范圍內(nèi)變動,則可得到如下RF公式:
結(jié)果如下表所示。
表1. 18.1 GHz LO的M × N雜散表
表中的第一行(黃色亮顯)顯示所需的13 GHz信號,它是混頻器中的1 × 1的結(jié)果。其他亮顯單元顯示可能有問題的帶內(nèi)頻率,它們可能表現(xiàn)為帶內(nèi)雜散。例如,15.55 GHz信號在12 GHz到16 GHz的目標(biāo)范圍內(nèi)。輸入端一個15.55 GHz信號音與LO混頻,產(chǎn)生一個5.1GHz信號音(18.1 × 2–15.55 × 2 = 5.1 GHz)。其他未亮顯行也可能造成問題,但由于其在帶外,可以通過輸入帶通濾波器濾除。
雜散水平取決于多個因素。主要因素是混頻器的性能?;祛l器從根本上說是一個非線性器件,其內(nèi)部會產(chǎn)生許多諧波。根據(jù)混頻器內(nèi)部二極管的匹配精度和混頻器雜散性能的優(yōu)化程度,可確定輸出雜散水平。數(shù)據(jù)手冊通常會提供一個混頻器雜散圖表,它可以幫助確定雜散水平。表2所示的例子是混頻器HMC773ALC3B的雜散水平表。該表給出的是雜散相對于1 × 1目標(biāo)信號音的dBc水平。
表2. HMC773ALC3B混頻器雜散表
利用此雜散表并擴(kuò)展表1中所做的分析,我們便可全面了解哪些m × n鏡像音可能會干擾接收機(jī),以及其水平是多少。可以生成一個電子表格,其輸出與圖8所示相似。
圖8. 12 GHz至16 GHz Rx的m × n鏡像
此圖中的藍(lán)色部分表示所需帶寬。線段表示不同的m × n鏡像及其水平。由此圖很容易知道,混頻器之前需要滿足什么樣的濾波要求才能消除干擾。本例中有多個鏡像雜散落在帶內(nèi),無法濾除。下面將說明如何利用高中頻架構(gòu)的靈活性來繞開其中的一些雜散,這是超外差架構(gòu)做不到的。
接收模式下避開干擾
圖9顯示了一個類似頻率規(guī)劃,其范圍是8 GHz到12 GHz,默認(rèn)IF為5.1 GHz。此圖是混頻器雜散的另一種視圖,顯示了中心調(diào)諧頻率與m × n鏡像頻率的關(guān)系,而不是之前所示的雜散水平。此圖中的1:1粗對角線表示期望的1 × 1雜散。圖上的其他直線代表m × n鏡像。此圖左側(cè)代表IF調(diào)諧無靈活性的部分。這種情況下,IF固定在5.1 GHz。調(diào)諧頻率為10.2 GHz時,2 × 1鏡像雜散跨過目標(biāo)信號。這意味著如果調(diào)諧到10.2 GHz,那么很有可能附近信號會阻塞目標(biāo)信號的接收。右側(cè)顯示了通過靈活I(lǐng)F調(diào)諧解決這個問題的辦法。這種情況下,在9.2 GHz附近時IF從5.1 GHz切換到4.1 GHz,從而防止交越雜散發(fā)生。
圖9. 無IF靈活性時的m × n交越雜散(上),利用IF調(diào)諧避開交越(下)
這只是一個說明高中頻架構(gòu)如何避開阻塞信號的簡單例子。當(dāng)結(jié)合智能算法來確定干擾并計(jì)算新的可能IF頻率時,便有許多可行的方法來構(gòu)建一種能夠靈活適應(yīng)任何頻譜環(huán)境的接收機(jī)。這就像確定給定范圍(通常是3 GHz到6 GHz)內(nèi)的合適IF一樣簡單,然后根據(jù)該頻率重新計(jì)算并設(shè)置LO。
高中頻架構(gòu)發(fā)射機(jī)頻率規(guī)劃
同接收頻率規(guī)劃一樣,也可以利用高中頻架構(gòu)的靈活性來改善發(fā)射機(jī)的雜散性能。對接收機(jī)而言,頻率成分有時是無法預(yù)測的。但對發(fā)射機(jī)而言,輸出端的雜散更容易預(yù)測。此RF成分可利用下式來預(yù)測:
其中,IF通過AD9371調(diào)諧頻率預(yù)先確定,LO通過所需輸出頻率確定。
像對待接收通道一樣,發(fā)射側(cè)也可以生成混頻器圖表。示例如圖10所示。在此圖中,最大雜散是鏡像和LO頻率,利用混頻器之后的帶通濾波器可將其降到所需水平。在FDD系統(tǒng)中,雜散輸出可能會使鄰近接收機(jī)降敏,帶內(nèi)雜散會帶來問題,這種情況下IF調(diào)諧的靈活性便很有用。在圖10所示例子中,如果使用5.1 GHz的靜態(tài)IF,發(fā)射機(jī)輸出端會存在一個接近15.2 GHz的交越雜散。通過將14 GHz調(diào)諧頻率時的IF調(diào)整到4.3 GHz,便可避開該交越雜散,如圖11所示。
圖10. 無濾波的輸出雜散
圖11. 靜態(tài)IF引起交越雜散(上),利用IF調(diào)諧避開交越雜散(下)
設(shè)計(jì)示例—寬帶FDD系統(tǒng)
為了展示這種架構(gòu)能夠?qū)崿F(xiàn)的性能,我們利用ADI公司成品器件構(gòu)建了一個接收機(jī)和發(fā)射機(jī)FDD系統(tǒng)原型,其接收頻段的工作頻率范圍配置為12 GHz至16 GHz,發(fā)射頻率的工作頻率范圍為8 GHz至12 GHz。使用5.1 GHz的IF來收集性能數(shù)據(jù)。接收通道的LO范圍設(shè)置為17.1 GHz至21.1 GHz,發(fā)射通道的LO范圍設(shè)置為13.1 GHz至17.1 GHz。原型的功能框圖如圖12所示。在該圖中,X和Ku變頻器板顯示在左側(cè),AD9371評估板顯示在右側(cè)。
圖12. X和Ku波段Rx Tx FDD原型系統(tǒng)功能框圖
增益、噪聲系數(shù)和IIP3數(shù)據(jù)在接收下變頻器上收集,顯示于圖13(上)中。整體而言,增益約為20 dB,NF約為6 dB,IIP3約為–2dBm。利用均衡器可實(shí)現(xiàn)額外的增益調(diào)整,或者利用AD9371中的可變衰減器執(zhí)行增益校準(zhǔn)。
圖13. Ku波段Rx數(shù)據(jù)(上),X波段Tx數(shù)據(jù)(下)
同時也測量了發(fā)射上變頻器,并記錄其增益、P1dB和OIP3。此數(shù)據(jù)與頻率的關(guān)系顯示于圖13(下)。增益約為27 dB,P1 dB約為22dBm,OIP3約為32 dBm。
當(dāng)此板與集成收發(fā)器一起使用時,接收和發(fā)射的總體特性如表3所示。
表3. 系統(tǒng)總體性能表
總的來說,接收機(jī)性能與超外差架構(gòu)相當(dāng),而功耗大大降低。等效超外差設(shè)計(jì)的接收機(jī)鏈功耗會高于5 W。此外,原型板的建造并未以縮小尺寸為優(yōu)先目標(biāo)。利用適當(dāng)?shù)腜CB布局技巧,并將AD9371集成到與下變頻器相同的PCB上,采用這種架構(gòu)的解決方案總尺寸可縮小到僅4到6平方英寸,顯著小于需要近8到10平方英寸的等效超外差解決方案。此外,利用多芯片模塊(MCM)或系統(tǒng)化封裝(SiP)等技術(shù)可進(jìn)一步縮小尺寸。這些先進(jìn)技術(shù)可將尺寸縮小到2至3平方英寸。
結(jié)語
本文介紹了一種切實(shí)可行的架構(gòu)——高中頻架構(gòu),它可替代傳統(tǒng)方法,大幅改進(jìn)SWaP。文中簡要說明了超外差架構(gòu)以及接收機(jī)設(shè)計(jì)的重要規(guī)格。然后介紹高中頻架構(gòu),并闡釋其在濾波要求和集成度(可減少器件總數(shù))方面的優(yōu)勢。我們詳細(xì)說明了如何制定頻率規(guī)劃,以及如何利用可調(diào)諧IF來避開接收機(jī)上的干擾信號。在發(fā)射方面,其目標(biāo)是降低輸出雜散,我們提出了一種避開帶內(nèi)雜散的辦法,以及預(yù)測所有可能存在的輸出雜散產(chǎn)物的方法。
這種架構(gòu)的實(shí)現(xiàn)得益于近年來集成式直接變頻接收機(jī)的迅猛發(fā)展。隨著AD9371的誕生,通過高級校準(zhǔn)和高集成度可實(shí)現(xiàn)更高的性能。這種架構(gòu)在未來的低SWaP市場會變得特別重要。
本文轉(zhuǎn)載自亞德諾半導(dǎo)體。
推薦閱讀:
特別推薦
- 學(xué)子專區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來提高工業(yè)功能安全合規(guī)性?
- 如何通過配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動化多通道測試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- 音頻放大器的 LLC 設(shè)計(jì)注意事項(xiàng)
- 探索新能源汽車“芯”動力:盡在2025廣州國際新能源汽車功率半導(dǎo)體技術(shù)展
- 不容錯過的汽車電子盛會︱AUTO TECH China 2025第十二屆廣州國際汽車電子技術(shù)博覽會
- 基于 SiC 的三相電機(jī)驅(qū)動開發(fā)和驗(yàn)證套件
- 自主移動機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢想電子
模擬鎖相環(huán)
耐壓測試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池