ADC采樣積分方式的BLDC方波無感控制的原理
發(fā)布時(shí)間:2020-12-03 來源:Hardy Zhou 責(zé)任編輯:wenwei
【導(dǎo)讀】本文主要參考了TIDA-010031參考設(shè)計(jì),分析下ADC采樣積分方波無感控制的原理,方便大家更好地完成類似的方案設(shè)計(jì)。下面是典型的三相BLDC電機(jī)控制框圖:
1.下面是典型的三相BLDC電機(jī)控制框圖.
三個(gè)半橋驅(qū)動(dòng)BLDC無刷電機(jī),檢測(cè)低邊總線電流
2.典型的BLDC電機(jī)相電流和反電動(dòng)勢(shì)波形圖分析
從波形上看,每60度電角度,只有兩個(gè)半橋有驅(qū)動(dòng)電壓輸出,另外一個(gè)半橋上下管全關(guān),這個(gè)相電壓是懸浮態(tài)。
BLDC電機(jī)運(yùn)行后,相線都有反電動(dòng)勢(shì)。
電機(jī)反電動(dòng)勢(shì)來源于電機(jī)轉(zhuǎn)子旋轉(zhuǎn)引起磁通的變化,而磁通的變化在定子繞組上會(huì)產(chǎn)生感應(yīng)電壓。
對(duì)同一個(gè)電機(jī)來說,反電動(dòng)勢(shì)峰值跟電機(jī)轉(zhuǎn)速幾乎是固定的比例。
3.反電動(dòng)勢(shì)過零點(diǎn)到峰值的反電動(dòng)勢(shì)電壓和時(shí)間的積分
根據(jù)上面對(duì)反電動(dòng)勢(shì)峰值跟轉(zhuǎn)速(電頻率)幾乎成固定比例的描述,設(shè)定 。Vm為反電動(dòng)勢(shì)峰值, 對(duì)于同一個(gè)電機(jī),我們可以認(rèn)為Kv幾乎不變。
以上圖左邊的藍(lán)色區(qū)域?yàn)槔?,該區(qū)域(反電動(dòng)勢(shì)過零點(diǎn)時(shí)刻到下一次換相點(diǎn)時(shí)刻之間的區(qū)域)的電角度是30度,也就是電角度(360度)的1/12。
設(shè)當(dāng)前電機(jī)電頻率為f, 單位為Hz。
反電動(dòng)勢(shì)的峰值電壓為 ,單位為伏特。
設(shè)反電動(dòng)勢(shì)從center tap value到最大值的時(shí)間為t1, 而。
那么藍(lán)色積分區(qū)域的積分值就等于藍(lán)色三角形的面積:
可以看到,積分結(jié)果是Kv值的,因此積分結(jié)果也是幾乎不變的。
所以我們可以根據(jù)積分的值跟固定閾值作比較來判斷換相點(diǎn)。
4.ADC如何采樣反電動(dòng)勢(shì)
方波無感BLDC的ADC采樣積分控制,電路設(shè)計(jì)有三相相電壓ADC采樣電路,每60度電角度區(qū)間電機(jī)的兩相由于半橋有輸入電壓同時(shí)有電感電流,在不增加額外電路的情況下很難獲得反電動(dòng)勢(shì)電壓,而懸浮相由于沒有半橋電壓輸入和電感電流,所以可以從檢測(cè)該相端電壓推導(dǎo)出該相實(shí)際的反電動(dòng)勢(shì)電壓,具體可以看下面的推導(dǎo),推導(dǎo)過程參考了TI的參考設(shè)計(jì)TIDA-010031 http://www.ti.com/lit/ug/tiduej4/tiduej4.pdf?ts=1588819919326
所以如果對(duì)這個(gè)電機(jī)控制方法感興趣的,可以在TI官網(wǎng)上查看該參考設(shè)計(jì)的軟硬件開發(fā)資料。
設(shè)計(jì)上采用下管常開,上管打PWM的策略驅(qū)動(dòng)電機(jī)??紤]到電機(jī)驅(qū)動(dòng)的PWM duty的大小是變化的,可以根據(jù)半橋上管ON的時(shí)間長(zhǎng)短來決定采樣策略,因?yàn)槿绻瞎軐?dǎo)通時(shí)間太短,為了避開MOSFET開通關(guān)斷的影響,留給采樣的時(shí)間就變得很少,不利于采樣的準(zhǔn)確性.
● 在上管ON的時(shí)間比較長(zhǎng)時(shí),在上管ON時(shí)遠(yuǎn)離MOSFET開關(guān)時(shí)刻檢測(cè)懸浮相的反電動(dòng)勢(shì)電壓(一般在ON時(shí)間的正中間進(jìn)行采樣)。
此時(shí)的驅(qū)動(dòng)邏輯是A相上管導(dǎo)通,B相下管導(dǎo)通, 所以有。
Ea, Eb, Ec為電機(jī)三相反電動(dòng)勢(shì)電壓,va, vb, vc為三相半橋中點(diǎn)電壓,也就是電機(jī)三相輸入電壓。
La, Lb, Lc為電機(jī)三相相電感,ia, ib,ic為電機(jī)三相輸入電流,Ra, Rb, Rc為電機(jī)三相輸入電阻(考慮三相電阻相等), vn為電機(jī)三相中點(diǎn)電壓。
可以得到當(dāng)Ec=0,也就是反電動(dòng)勢(shì)過零時(shí),, 也就是說當(dāng)ADC檢測(cè)到時(shí),就意味著這個(gè)時(shí)刻是C相的反電動(dòng)勢(shì)過零點(diǎn), 那么理論上再經(jīng)過1/12 的電周期時(shí)間,電機(jī)就需要進(jìn)行換向.
● 上管ON的時(shí)間比較短時(shí),在上管OFF時(shí)檢測(cè)懸浮相的反電動(dòng)勢(shì)電壓(一般在OFF時(shí)間的正中間進(jìn)行采樣)
此時(shí)的驅(qū)動(dòng)邏輯是A相上管關(guān)閉,B相下管仍導(dǎo)通,此時(shí)A相下管MOSFET體二極管續(xù)流,所以有。
得到當(dāng)Ec=0,也就是反電動(dòng)勢(shì)過零時(shí),vc=0, 也就是說當(dāng)ADC檢測(cè)到vc=0時(shí),就意味著這個(gè)時(shí)刻是C相的反電動(dòng)勢(shì)過零點(diǎn), 那么理論上再經(jīng)過1/12的電周期時(shí)間,電機(jī)就需要進(jìn)行換向.
從上面的分析,我們可以看到,使用ADC采樣積分方式進(jìn)行無感BLDC控制,設(shè)計(jì)上需要注意以下兩點(diǎn)
1. 積分閾值跟電機(jī)的反電動(dòng)勢(shì)峰值和轉(zhuǎn)速比值相關(guān),可能會(huì)隨著電機(jī)不同而不同,需要針對(duì)電機(jī)進(jìn)行調(diào)整。
2. 上管做PWM驅(qū)動(dòng)的設(shè)計(jì)下, 可以采用不同的ADC采樣策略來針對(duì)大duty和小duty的情況,同時(shí)反電動(dòng)勢(shì)過零點(diǎn)的判斷也需要調(diào)整
3. 電機(jī)高速情況下,電頻率相對(duì)比較高,而ADC積分采樣基于PWM開關(guān)周期采樣的,所以要獲得比較準(zhǔn)確的換相點(diǎn),需要比較高的開關(guān)頻率,如果開關(guān)頻率比較低,意味著采樣速率慢,可能會(huì)造成換相延遲比較大,從而影響電機(jī)的正??刂?。
推薦閱讀:
特別推薦
- 學(xué)子專區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來提高工業(yè)功能安全合規(guī)性?
- 如何通過配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動(dòng)化多通道測(cè)試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- 基于 SiC 的三相電機(jī)驅(qū)動(dòng)開發(fā)和驗(yàn)證套件
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
- AI不斷升級(jí),SSD如何扮演關(guān)鍵角色
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 大電流、高性能降壓-升壓穩(wěn)壓器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
MediaTek
MEMS
MEMS傳感器
MEMS麥克風(fēng)
MEMS振蕩器
MHL
Micrel
Microchip
Micron
Mic連接器
Mi-Fi
MIPS
MLCC
MMC連接器
MOSFET
Mouser
Murata
NAND
NFC
NFC芯片
NOR
ntc熱敏電阻
OGS
OLED
OLED面板
OmniVision
Omron
OnSemi
PI
PLC